GCSE Mathematics Practice Tests: Set 9 Paper 3H (Calculator)

Time: 1 hour 30 minutes

You should have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 there may be more space than you need.
- Calculators may be used.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- · Check your answers if you have time at the end.

Answer ALL questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 (a) Work out the value of $\left(\frac{125.6}{4.7}\right)^2$

Write down all the figures on your calculator display.

714.140335	
(2)	ì

(b) Write your answer to part (a) correct to 3 significant figures.

714

(Total for Question 1 is 3 marks)

2 Helga has played a game many times.

Relative Frequency

She scored 9 or more in $\frac{5}{6}$ of these games.

Helga is going to play the game another 60 times.

Work out an estimate for the number of times she will score 9 or more in these 60 games.

50

(Total for Question 2 is 2 marks)

3 (a) On the grid, draw the graph of y = 4 - 2x for values of x from -1 to 3.

×	-1	0	1	2	3
7	6	4	2	0	-2

(b) Write down the coordinates of the point where the graph of y = 4 - 2x crosses the line y = 1

1.5	l s
(,)
	(1)

(Total for Question 3 is 4 marks)

4 The diagram shows two cogs, A and B.

There are 32 teeth on cog A.

There are 24 teeth on cog B.

The two cogs both rotate.

Cog A completes 12 full turns while cog B completes 16 full turns.

Work out the number of full turns that cog A completes while cog B completes 60 full turns.

$$2 = 45$$
 $2 = 45$

(Total for Question 4 is 2 marks)

Angles in Polygons

- 5 The size of each exterior angle of a regular polygon is 24°
 - (a) Work out the number of sides of the polygon.

Sum of exteriors
=
$$360^{\circ}$$

(-24) $n = 15$

(2)

Here is a pentagon.

Diagram NOT accurately drawn

(b) Work out the value of t.

Sum of interior

137° + 128° +90° +90° + t° = 540° 445° ++°

(Total for Question 5 is 5 marks)

6 Marta breeds dogs.

32 dogs give birth to puppies.

The table shows information about the number of puppies born to each dog.

Frequency
5
12
10
4
1

(a) Write down the modal class. $\sum f = 32$

MOST FREQUENT

(b) Work out an estimate for the mean number of puppies born to each dog.

Estimate for the mean =
$$\frac{5 \text{ fm}}{5 \text{ f}}$$
= $\frac{208}{32}$
= $\frac{6.5}{32}$

6.5

(Total for Question 6 is 5 marks)

7

Diagram **NOT** accurately drawn

Work out the value of *x*. Give your answer correct to 3 significant figures.

Aymagores
$$a^2 + b^2 = c^2$$

 $x^2 + 11^2 = 15^2$
 $x^2 + 121 = 225$
 (-121) $x^2 = 104$
 \sqrt{ANS} $x = 10.2$ (35.f)

10.2cm

(Total for Question 7 is 3 marks)

- 8 The line L has equation 4x + 5y = 20
 - (a) Work out the gradient of L.

NEED: y = moc + c (-4x) $(\div 5)$ gradient

$$4x + 5y = 20$$

 $(-4x)$ $5y = 20 - 4x$
 $(\div 5)$ $y = 4 - \frac{4}{5}x$
 $x = -\frac{4}{5}$

-4
<u>5</u>
(2)

The line M has gradient 2.

L and M both cross the y-axis at the same point.

(b) Find an equation for M.

at y-axis, x=0 4(0) + 5y = 20 5y = 20 (-5) y = 4 M: y = 2 - 2x + C C = 4 sinceSame intercept as L y = 2x + 4

MOTE

KAUSO ENTERCEPT FROM

PART (A) = 4 *

: crosses y-axis at (0,4)

y = 2x + 4(2)

(Total for Question 8 is 4 marks)

9

Diagram NOT accurately drawn

P, Q, R and S are points on a circle. Angle $RPQ = 62^{\circ}$ and angle $PQR = 78^{\circ}$

(a) (i) Find the size of angle PSR.

180-78=107

102 .

(ii) Give a reason for your answer.

opposite angles in a cyclic quadrilateral are equal. **(2)**

(b) Work out the size of angle PSQ.

Angles un a $\Delta = 180^{\circ}$ Same segment theorem

(Total for Question 9 is 4 marks)

The cumulative frequency graph shows information about the number of calories used by 88 people during their exercise programme at a sports centre.

(a) Use the graph to find an estimate for the median number of calories used.

Median =
$$\frac{n}{2}$$
 = $\frac{88}{7}$ = 44th term
= 350 calories
(2)

(b) Use the graph to find an estimate for the number of these 88 people who used more than 500 calories.

(2)

(Total for Question 10 is 4 marks)

(a) Solve the inequality $\frac{1}{4}p < 7$ 11

(b) Solve the inequality $16q^2 > 9$

Sketch (2+ $\frac{3}{4}$) (q- $\frac{3}{4}$) >0

Where Is the function greater than 0? $x > \frac{3}{4}$ and $x < -\frac{3}{4}$ (3)

(Total for Question 11 is 4 marks)

- 12 Cylinder A has height 12 cm and diameter 8 cm.
 - (a) Work out the volume of cylinder A. Give your answer correct to 3 significant figures.

$$V = CSA \times h$$
 $CSA = \pi C^{2} (r=8=2) CSA = \pi (4)^{2} = 16\pi$
 $V = CSA \times h$
 $V = CSA \times h$
 $V = 16\pi \times 12 = 603 (3s.f)$

Cylinder B is similar to cylinder A. The height of cylinder **B** is 21 cm.

LSF ASF VSF (Similar Shapes)

(b) Work out the diameter of cylinder **B**.

Height SF
A:B

$$12 \cdot 12 \cdot 21$$

 $1:\frac{7}{4}$ $1:\frac{7}{4}$
Length SF = $\frac{7}{4}$
Length A = 8

(2)

Cylinder C is similar to cylinder A.

The volume of cylinder C is 64 times the volume of cylinder A.

LSF ASF VSF

(c) Work out the height of cylinder C.

$$VSF = 64$$
 A: C
1:64
LSF = \sqrt{VSF} = | 1:4
height of A=12 | 12:48

..... cm (3)

(Total for Question 12 is 7 marks)

13 Daniel buys a new car.

> In the first year, the value of the car decreases by 24% of its original value. The value of the car at the end of the first year is £13 300.

(a) Work out the original value of the car.

$$100^{\circ}/_{\circ} - 24^{\circ}/_{\circ} = 76^{\circ}/_{\circ}$$
 $76^{\circ}/_{\circ} = £13300$
 $(\div 76)$
 $1^{\circ}/_{\circ} = £175$
 $(\times 100)$
 $100^{\circ}/_{\circ} = £17500$

c	17-500	
t		
		(3)

The value of the car at the end of the first year is £13 300.

In each of the second year, the third year and the fourth year, the value of the car decreases by x% of its value at the beginning of each year.

The value of the car at the end of the fourth year is £6500.

(b) Work out the value of x. Give your answer correct to 3 significant figures.

condusien

(x100)

$$(1+20)^{3} = 6500$$

$$(1+20)^{3} = 6500$$

$$(1+20)^{3} = 0.4887...$$

$$(1+20)^{3} = 0.4887...$$

$$1+20)^{4} = 0.7876...$$

$$200 \times (1+20)^{3} = 6500$$

$$1 + 200 \times 1000$$

$$2 \times 1000$$

14 Two fair 6-sided dice are thrown.

The total is the sum of the numbers that each dice lands on.

(a) Work out the probability that the total is 4.

4 can be obtained by: (1,3), (3,1) (2,2)

$$P(1,3) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$$

 $P(3,1) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$
 $P(2,2) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$

Three people each throw the two dice.

(b) Work out the probability that none of the three people get a total of 4.

(b) Work out the probability that none of the three people get a total of 4.

$$P(\text{Total of 4}) = \frac{3}{36}$$

$$P(\text{NOT Total of 4}) = 1 - \frac{3}{36} = \frac{33}{36}$$

$$P(\text{NOT 4}, \text{NOT 4}, \text{NOT 4}, \text{NOT 4})$$

$$= \frac{33}{36} \times \frac{33}{36} \times \frac{33}{36}$$

$$= 0.770254629$$

(Total for Question 14 is 4 marks)

15 Here is a quadrilateral *PQRS*.

Diagram **NOT** accurately drawn

Angle SRQ is acute.

Work out the size of angle SQR.

Give your answer correct to 1 decimal place.

A J27° Rule

(X4-J19)

Shift Sin

Highes un triongle=180

$$\alpha^2 = b^2 + c^2 - 2bc \cos A$$

 $x^2 = (12^2 + (8)^2 - 2(12)(8)\cos (120)$
 $x^2 = 304$

(Total for Question 15 is 6 marks)

16 Solve the simultaneous equations

$$y = 5x^2 \qquad \bigcirc$$
$$y - 4 = 3x \qquad \bigcirc$$

Show your working clearly.

Give your solutions correct to 2 decimal places.

(2):
$$y-4=3x$$

C+4) $y=3x+4$
Put $y=3x+4$ in (1): $3x+4=5x^2$
(-3x) $4=5x^2-3x$
(-4) $0=5x^2-3x-4$
Factorise... $x=-\frac{b\pm\sqrt{b^2-4ac}}{2a}$
Conadvance femula $a=5$
 $b=-3$
 $c=-4$ $x=-(-3)\pm\sqrt{(-5)^2-4(5)(-4)}$
 $x=1.24$ (2d.p) or $x=-0.64$ (2d.p)

(Total for Question 16 is 4 marks)

Show that $\frac{\sqrt{50} - \sqrt{18}}{4}$ can be written in the form $\frac{1}{\sqrt{k}}$ where k is an integer. Show your working clearly.

Show that
$$\frac{\sqrt{50-\sqrt{18}}}{4}$$
 can be written in the form $\frac{1}{\sqrt{k}}$ where $\frac{1}{\sqrt{k}}$ is $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{k}}$ is $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{k}}$ is $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{k}}$ is $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$ is $\frac{1}{\sqrt{2}}$ in $\frac{1}$

(Total for Question 17 is 3 marks)

18

Diagram **NOT** accurately drawn

(a) Work out the area of triangle ABC. Give your answer correct to 3 significant figures.

$$A = \frac{1}{2}(7)(10) \sin(105)$$

= 33.8 (35.f)

33.8 cm²

(b) Work out the size of angle BAC. Give your answer correct to 1 decimal place.

Need a pair of sides/ angles to use sure later!

$$a^{2} \pm b^{2} + c^{2} - 2bc \cos A$$

$$a^{2} = (7)^{2} + (10)^{2} - 2(7)(10) \cos (105)$$

$$a^{2} = 185.2.$$

$$a = 13.6.$$

$$\frac{\sin A}{a} = \frac{\sin C}{C}$$

$$\frac{\sin A}{a} = \frac{\sin C}{C}$$

$$\frac{\sin A}{c} = \frac{\sin A}{c}$$

$$\frac{\sin$$

Shift sun *

0 = 45.2 (ld.p)

	(Total for Question 18 is 7 marks)
19 Simplify fully	Simplifying Algebraic Fractions $5x^2 + 5x - 4$
factorise top	$3(4x^2-1)$
factorise bottom	(3x+4)(2x-1)
isn't finished!	$3(4x^2-1)=3(2x+1)(2x-1)$ Difference of two squares
Simplify	3(2x+1)(2x-1) (3x+4)(2x-1)
	$=\frac{3(3x+1)}{3x+4}$
	3(2×+1) 3×+4.
	(Total for Question 19 is 3 marks)

TOTAL FOR PAPER IS 80 MARKS

(5)