Que	stion	Working	Answer	Μ	arks	Notes
1	а		80 000	1	B1	
	b	$0.5 \times 10^{5-8}$ or 0.0005 or 5×10^{n} or 5.0×10^{n}	5×10^{-4}	2	M1	
					A1	for 5×10^{-4} or 5.0×10^{-4}
2	а		y ¹⁴	1	B1	
	b		16 <i>m</i> ¹²	2	B2	if not B2 then B1 for am^{12} or $16m^b$ or 2^4m^{12} $b \neq 0, 12$ $a \neq 1, 16$
	с	5x + 15 = 3x - 4 or $x + 3 = \frac{3x}{5} - \frac{4}{5}$	$-\frac{19}{2}$ oe	3	M1	for removing bracket in a correct equation or dividing all terms by 5 in a correct equation
		e.g. $5x - 3x = -4 - 15$			M1	ft from $ax + b = cx + d$ for correctly isolating terms in <i>x</i> on one side of equation and constant terms on the other side
					A1	dep on at least M1

GCSE Mathematics (9–1) Practice Tests Set 8 – Paper 1H mark scheme

Que	stion	Working	Answer		[arks	Notes
3	a (i)		1, 2, 3, 4, 6, 12	1	B1	cao
	(ii)		1, 3, 5, 7, 9, 10, 11	1	B1	cao
4	(a)	$ac=M+bd$ or $-ac=-M-bd$ or $\frac{M}{c}=a-\frac{bd}{c}$		2	M1	For a correct first stage
			$a = \frac{M + bd}{c}$		A1	oe, eg $a = \frac{M}{c} + \frac{bd}{c}$, $a = \frac{-M - bd}{-c}$ [must have been seen with $a =$ to award accuracy mark]
	(b)	5 <i>x</i> <39+4 oe		2	M1	Accept as equation or with the wrong inequality sign. Also award M1 for an answer of 8.6 or 8.6 with an = sign or the incorrect inequality sign.
			$x < 8\frac{3}{5}$		A1	Accept $x < \frac{43}{5}$ or $x < 8.6$ or [-00, 8.6]
	(c)	eg $6e^2(3f^3 - 2ef)$, eg $2f(9e^2f^2 - 6e^3)$ eg $ef(18ef^2 - 12e^2)$		2	M1	Any correct partially factorised expression with at least 2 terms in the common factor or for the correct common factor and a 2 term expression inside the brackets with just one error
			$6e^2f(3f^2-2e)$		A1	

Que	stion	Working	Answer	Μ	larks	Notes
5	d (i)		(x-4)(x+6)	2	M1	for $(x + a)(x + b)$ where either $ab = -24$ or a + b = +2 e g $(x - 6)(x + 4)$
					A1	
	(ii)		4, -6	1	B1	cao or ft from any $(x + p)(x + q)$
6	a (i)		54	1	B1	cao
	(ii)		<u>angle</u> at <u>centre</u> is <u>twice</u> <u>angle</u> at <u>circumference</u>	1	B1	dep on B1 in (a)(i) accept alternative reasons eg. angle at circumference is half the angle at the centre
	b (i)		27	1	B1	ft from (a)(i) for $\frac{"54"}{2}$
	(ii)		<u>alternate segment</u> theorem	1	B1	dep on B1 in (b)(i) accept alternative reason angle between <u>tangent</u> and <u>radius</u> is <u>90°</u> If answer for (b)(i) is ft from (a)(i) then reason must be angle between <u>tangent</u> and <u>radius</u> is <u>90°</u>

Question	Working	Answer	Μ	larks	Notes
7 a	Readings from graph at cf 20 and cf 60 eg. readings of 103 and 123	20.5	2	M1 A1	
					for answer in range $19 - 21$
b	Reading from graph from time = $120 (=55)$ or $80 - 55 (=25)$	No with correct figures	3	M1	accept reading in range 55 – 56
	$0.35 \times 80 \ (=28) \text{ or } e.g. \ \frac{80 - 55''}{80} \times 100 \text{ oe}$ $(=31(.25)) \text{ or}$ $\frac{55''}{80} \times 100 \text{ oe} \ (=68(.75))$			M1	accept a value in the range $30 - 31.25$ or a value in the range $68 - 70$ for this mark unless clearly from incorrect working
				Al	eg. No with 28 and 25 or No with 31.25% (accept value in range 30% – 31.25%) or No with 68.75% and 65% (accept value in range 68% – 70%)

Que	stion	Working	Answer	Μ	[arks	Notes
8	(a)		$\frac{4}{9}, \frac{4}{9}, \frac{1}{9}, \frac{5}{9}, \frac{3}{9}, \frac{1}{9}, \frac{5}{9}, \frac{4}{9}, 0$	2	B2	Award B1 for any 3 correct. Decimals must be correct (recurring shown), 0 can be $\frac{0}{9}$ or the branch crossed
						out or left blank
	(b)			3	M1	Award M1 for one correct product (ft tree diagram)
		$\frac{5}{10} \times \frac{4}{9} + \frac{4}{10} \times \frac{5}{9} + \frac{4}{10} \times \frac{3}{9} \text{ or } \frac{5}{10} \times \frac{4}{9} + \frac{4}{10} \times \frac{8}{9} \text{ oe or}$ $1 - \left(\frac{5}{10} \times \frac{4}{9} + \frac{5}{10} \times \frac{1}{9} + \frac{4}{10} \times \frac{1}{9} + \frac{1}{10}\right) \text{ oe}$			M1	A fully correct method (ft tree diagram)
			$\frac{52}{90}$		A1	oe decimals 0.577 or 57.7% rounded or truncated to 2 or more sf
9		$\angle OQT = 90^{\circ}$ and $\angle OQP = 18^{\circ}$ or $90 - 18$		3	M1	For 90° and 18° correctly identified in the working or on the diagram or for $90 - 18$ or for other fully correct method
			72		A1	
		Angle between <u>tangent</u> and <u>radius(or diameter)</u> is 90 degrees			B1	Correct reason for 90° angle [If used <u>alternate segment</u> theorem]

Question		Working	Answer	Μ	arks	Notes
10	а		-6.5 oe	1	B1	
	b	4y = 3x - 5 or $4x = 3y - 5$	$\frac{4x+5}{3}$ oe	2	M1	
					A1	
	с	$\sqrt{19-3}$ or f(4) or $\frac{3\sqrt{19-3}-5}{4}$	1.75 oe	2	M1	
		or $\frac{3\sqrt{19-x}-5}{4}$ oe				
					A1	for 1.750e (and no other solution)
11	(a)	$\frac{2^3}{2^7}$ or $2^3 \times 2^{-7}$ or $\frac{1}{2^4}$ or $\frac{1}{16}$ and $16 = 2^4$		2	M1	
			-4		A1	Accept 2 ⁻⁴
	(b)	13 ⁻²⁴ ×13 ⁵		2	M1	for 13^{-24} or for $k = -6 \times 4 + 5$
			-19		A1	Accept 13 ⁻¹⁹

Que	stion	Working	Answer	Μ	arks	Notes
12	(a)		3, 4	1	B1	
	(b)		see graph at end of mark scheme	3	B3	for correct region identified
						If not B3 then award B2 for $x + y = 4$ drawn (with no additional lines drawn) and a region identified that satisfies at least 3 of the 5 given inequalities
						If not B2 then award B1 for line $x + y = 4$ drawn NB. May shade wanted or unwanted regions; lines may be solid or dashed

Que	stion	Working	Answer	Μ	larks	Notes
13	a	$\binom{\mathbf{u}\mathbf{u}\mathbf{u}}{BC} = \binom{-2}{-7} + \binom{10}{11} \left(= \binom{8}{4} \right)$	(13, 12)	3	M1	or coordinates $(5 - 2, 8 - 7)$ (= (3, 1)) assigned to <i>A</i> (may be seen in vector form) or (13, y) or (x, 12) given as coordinates for <i>C</i>
		$\binom{5}{8} + \binom{8}{4} \text{"or} \binom{10}{11} + \binom{3}{1} \text{"}$			M1	for coordinates $(5-2+10, 8-7+11)$ assigned to <i>C</i>
	b	e.g. $\binom{63}{211} - \binom{5}{8} = \binom{58}{203}$ with e.g. "58" ÷ 2 (=29) and "203" ÷ 7 (=29) OR e.g. $\binom{63}{211} - \binom{3}{1} = \binom{60}{210}$ with e.g. "60" ÷ 2 (=30) and "210" ÷ 7 (=30)	Proof	2	Al M1	may work with <i>A</i> and <i>E</i> , in which case may need to ft for method mark from (a)
					A1	proof with justification eg. $BE = 29\begin{pmatrix} 2\\7 \end{pmatrix}$ (or $AE = 30\begin{pmatrix} 2\\7 \end{pmatrix}$) with <i>ABE</i> is a straight line or 210 ÷ 60 = 3.5 and 7 ÷ 2 = 3.5 so <i>ABE</i> is a straight line

Que	stion	Working	Answer	Μ	arks	Notes
14	(a)	$R = kt^2$ oe		3	M1	Equation consistent with $R \propto t^2$
		eg $10 = k \times 2^2$ or $40 = k \times 4^2$ or $k = 2^{1/2}$			M1	Substitute values at any point on the graph or find the value of <i>k</i> . (Implies first M1.) Allow readings from graph for $t \pm 0.1$ and $R \pm 1$
			$R = \frac{5}{2}t^2$		A1	Award for $R = kt^2$ if the value of k is shown clearly in (a) or (b).
	(b)	$\frac{8}{5x} = \frac{5}{2}t^2$		2	M1	ft dep on answer of the form $R = kt^2$
			$t = \frac{0.8}{\sqrt{x}}$		A1	ft dep on answer of the form $R = kt^2$ Simplification of constant is not required. eg accept $t = \sqrt{\frac{16}{25}} \times \frac{1}{\sqrt{x}}$ [allow other clear arguments that clearly shows <i>t</i> is inversely proportional to \sqrt{x}]

Que	estion	Working	Answer	Marks		Notes
15	a (i)		3×7^3	1	B1	for 3×7^3 oe or 1029
	(ii)		$2^3 \times 3^5 \times 5 \times 7^4$	1	B1	for $2^3 \times 3^5 \times 5 \times 7^4$ oe or 23 337 720
	b	$\begin{array}{c cccc} A & & & & & & \\ & 3^4 & & 7^2 & 3 & & 7 \\ & & 5 & 7 & 2^3 \\ & & & 5 & \\ & & & C & \\ \end{array}$	4, 2, 1	2	M1	for $r = 1$ or for $p = 4$ and $q = 2$ or correct representation of <i>C</i> in terms of prime factors on a Venn diagram
					A1	

Que	stion	Working	Answer	Μ	arks	Notes
16		$\frac{1}{4} \times \frac{2}{5} \left(= \frac{2}{20} \right) \text{ or } \frac{3}{4} \times \frac{3}{5} \left(= \frac{9}{20} \right)$ or $\frac{1}{4} \times \frac{3}{5} \left(= \frac{3}{20} \right) \text{ or } \frac{3}{4} \times \frac{2}{5} \left(= \frac{6}{20} \right)$	$\frac{121}{400}$ oe	4	M1	for any one correct probability
		$\frac{1}{4} \times \frac{2}{5} + \frac{3}{4} \times \frac{3}{5} \left(= \frac{11}{20} \right) \text{ or }$ $1 - \left(\frac{1}{4} \times \frac{3}{5} + \frac{3}{4} \times \frac{2}{5} \right) \left(= \frac{11}{20} \right)$			M1	for a complete method
		" $\frac{11}{20}$ "×" $\frac{11}{20}$ " or $\left("\frac{2}{20}"+"\frac{9}{20}"\right)^2$			M1	
					A1	for $\frac{121}{400}$ oe or 0.3025 or 30.25%
17		$\frac{1}{(3x-5)(3x+5)} - \frac{1}{2(3x+5)}$	$\frac{7-3x}{2(3x-5)(3x+5)}$	3	M1	indep for $(3x + 5)(3x - 5)$
		E.g. $\frac{2}{2(3x-5)(3x+5)} - \frac{1(3x-5)}{2(3x-5)(3x+5)}$ or $\frac{6x+10}{(9x^2-25)(6x+10)} - \frac{9x^2-25}{(9x^2-25)(6x+10)}$			M1	for two correct fractions with a common denominator if there is any expansion at this stage then it must be correct
					A1	accept equivalents eg. $\frac{7-3x}{18x^2-50}$

Que	stion	Working	Answer		[arks	Notes
18	(a)	$\sqrt{9\times5}$ and $\sqrt{4\times5}$		2	M1	or for $45 = 3 \times 3 \times 5$ and $20 = 2 \times 2 \times 5$
			$5\sqrt{5}$ shown		A1	dep on M1 cao with sight of $3\sqrt{5}+2\sqrt{5}$ but we must see where these come from
	(b)	$\frac{2}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} \text{ or } \frac{2(\sqrt{3}+1)}{3-1} \text{ or } \frac{2\sqrt{3}+2}{2}$		2	M1	Rationalise denominator – award for seeing multiplication by $\frac{\sqrt{3}+1}{\sqrt{3}+1}$ or $\frac{-\sqrt{3}-1}{\sqrt{3}-1}$
			$1+\sqrt{3}$		Al	$\frac{-\sqrt{3}-1}{\text{dep on M1}}$
	(c)	$(x+3\sqrt{2})^2 - (3\sqrt{2})^2 - 1$		2	M1	or $(x+3\sqrt{2})^2 - 18 - 1$ or for $a = 3\sqrt{2}$ or $b = -19$
			$(x+3\sqrt{2})^2 - 19$		A1	

Question		Working	Answer	Marks		Notes
19		$y = \frac{2}{3}x\left(+\frac{12}{3}\right)$ or $y = \frac{2x+12}{3}$ or gradient $= \frac{2}{3}$	3x + 2y = 86	5	M1	
		(gradient of perpendicular line =) $-\frac{3}{2}$ oe or $\frac{-1}{\frac{2}{3}}$ oe			M1	ft from their gradient
		$37 = "-\frac{3}{2}" \times 4 + c$ or $c = 43$			M1	(dep on previous M1) and ft from their gradient
		$y = -\frac{3}{2}x + 43$			A1	correct equation (equation in any form)
					A1	for $3x + 2y = 86$ oe for a simplified equation with integer coefficients e.g. $3x = 86 - 2y$

					Edexcel averages:	Mean score of students achieving grade						
Question	Skills tested	Mean score	Max score	Mean %	ALL	9	8	7	6	5	4	3
1a	Standard form	0.98	1	98	0.98	0.99	0.99	0.99	0.98	0.97	0.95	0.94
1b	Standard form	1.88	2	94	1.88	1.96	1.93	1.90	1.86	1.81	1.70	1.52
2a	Algebraic manipulation	0.98	1	98	0.98	0.99	0.99	0.98	0.98	0.96	0.95	0.89
2b	Algebraic manipulation	1.51	2	76	1.51	1.90	1.67	1.41	1.20	1.05	0.88	0.82
2c	Linear equations	2.76	3	92	2.76	2.95	2.89	2.82	2.73	2.53	2.09	1.62
3a	Set language and notation	0.92	1	92	0.92	0.98	0.97	0.94	0.89	0.81	0.73	0.60
3b	Set language and notation	0.73	1	73	0.73	0.94	0.85	0.71	0.57	0.43	0.29	0.21
4a	Algebraic manipulation	1.64	2	82	1.64	1.95	1.86	1.72	1.48	1.11	0.71	0.33
4b	Inequalities	1.73	2	87	1.73	1.93	1.85	1.76	1.64	1.47	1.12	0.77
4c	Algebraic manipulation	1.34	2	67	1.34	1.83	1.57	1.27	0.97	0.71	0.47	0.32
5a	Quadratic equations	1.76	2	88	1.76	1.98	1.95	1.88	1.66	1.35	0.86	0.56
5b	Quadratic equations	0.76	1	76	0.76	0.99	0.95	0.81	0.56	0.34	0.13	0.07
6ai	Circle properties	0.55	1	55	0.55	0.78	0.60	0.49	0.39	0.29	0.22	0.12
6aii	Circle properties	0.44	1	44	0.44	0.72	0.50	0.36	0.26	0.15	0.11	0.04
6bi	Circle properties	0.62	1	62	0.62	0.82	0.73	0.60	0.45	0.33	0.25	0.15
6bii	Circle properties	0.33	1	33	0.33	0.62	0.39	0.21	0.10	0.05	0.01	0.00
7a	Statistical measures	1.41	2	71	1.41	1.84	1.65	1.38	1.11	0.79	0.47	0.24
7b	Graphical representation of data	2.32	3	77	2.32	2.79	2.57	2.30	2.05	1.69	1.30	0.81
8a	Probability	1.78	2	89	1.78	1.97	1.94	1.86	1.72	1.45	1.05	0.61
8b	Probability	2.03	3	68	2.03	2.73	2.48	2.09	1.48	0.82	0.34	0.12
9	Circle properties	2.04	3	68	2.04	2.62	2.33	2.02	1.64	1.24	0.84	0.45
10a	Function notation	0.88	1	88	0.88	0.97	0.95	0.92	0.84	0.71	0.55	0.38
10b	Function notation	1.16	2	58	1.16	1.90	1.56	0.98	0.43	0.15	0.05	0.01
10c	Function notation	1.54	2	77	1.54	1.92	1.84	1.62	1.21	0.82	0.53	0.36

Practice Tests Set 8 – Paper 1H

					Edexcel averages:	Mean score of students achieving grade						
		Mean	Max	Mean								
Question	Skills tested	score	score	%	ALL	9	8	7	6	5	4	3
11a	Powers and roots	1.32	2	66	1.32	1.92	1.62	1.22	0.85	0.47	0.28	0.17
11b	Powers and roots	1.42	2	71	1.42	1.89	1.63	1.35	1.05	0.82	0.53	0.45
12a	Simultaneous linear equations	0.80	1	80	0.80	0.99	0.94	0.81	0.67	0.48	0.32	0.24
12b	Graphs	1.59	3	53	1.59	2.71	2.04	1.19	0.59	0.32	0.15	0.09
13a	Vectors	2.14	3	71	2.14	2.87	2.59	2.12	1.54	1.02	0.54	0.19
13b	Vectors	0.52	2	26	0.52	1.21	0.52	0.19	0.06	0.02	0.00	0.00
14a	Proportion	2.03	3	68	2.03	2.90	2.60	2.06	1.19	0.57	0.19	0.07
14b	Proportion	0.53	2	27	0.53	1.19	0.55	0.21	0.06	0.01	0.00	0.01
15ai	Powers and roots	0.66	1	66	0.66	0.95	0.81	0.61	0.42	0.26	0.12	0.08
15aii	Powers and roots	0.46	1	46	0.46	0.84	0.54	0.31	0.17	0.08	0.04	0.04
15b	Powers and roots	1.01	2	51	1.01	1.65	1.18	0.80	0.50	0.34	0.20	0.17
16	Probability	1.83	4	46	1.83	3.05	2.18	1.47	0.87	0.46	0.20	0.08
17	Algebraic manipulation	0.89	3	30	0.89	1.85	0.90	0.51	0.24	0.11	0.04	0.03
18a	Applying number	1.00	2	50	1.00	1.68	1.27	0.81	0.41	0.19	0.10	0.05
18b	Applying number	0.82	2	41	0.82	1.65	0.98	0.46	0.18	0.08	0.02	0.01
19	Graphs	1.36	5	27	1.36	3.37	1.16	0.41	0.13	0.05	0.02	0.00
		50.47	80	63	50.47	69.79	57.52	46.55	36.13	27.31	19.35	13.62

Suggested Grade Boundaries based on peformance of students in Summer 2018

9	8	7	6	5	4	3
61	51	41	32	24	16	12