Practice Tests Set 7 – Paper 3H mark scheme – Spring 2018

Qn		Working	Answer	Mark	Notes	
1	(a)	8.5 × 5	42.5	1	B1 cao	
	(b)		110°	1	B1 cao	
	(c)		Correct ×	2	M1 bearing of 40° or at distance 4 cm	
					A1 correctly marked ×	
2	(a)		Salt: 60 grams	3	M1 Salt: $\frac{2}{5} \times 150$ OR Sugar: $\frac{3}{5} \times 150$	
			Sugar: 90		5 To our sugar. 5	
			grams		A1 cao	
					A1 cao	
	(b)		1.71 : 1	2	M1 "90"+30 : "60"+10 OR Sugar = "90"+30 and Salt =	
					""60"+10 B1 ft	
					M1 120: 70 OR 12 : 7 OR 4 : 2.33	
					B1 cao	
3	(i)		$2^2 \times 5$	3	B1 for $2^2 \times 5$ oe or 20	
	(ii)		$2^3 \times 3 \times 5^2$		B2 for $2^3 \times 3 \times 5^2$ oe or 600	
					(B1 for any product using powers of 2 and 3 and 5 or at	
					least 300, 600 and 40, 80, 120)	
4	(a)		Correct box	3	B1 for median (28), B1 for quartiles (20, 42), B1 for	
			plot drawn		whiskers.	
	(b)		Two comparisons	2	e.g. range of men's ages is smaller than women's, median age greater than women's, IQR of men's ages smaller than women's	

Qn	Qn Working		Answer	Mark	Notes
5			Vertices at	2	B2
			(3, 2)(3, 4)		B1 for shape of correct size and orientation OR a correct
			(4, 4) (4, 3)		enlargement scale factor $\frac{1}{2}$, centre (1, 3)
6	-4×2	2 + 3k = 7	5	2	M1
					A1
7			28	5	M1 attempt to find radius or diameter of the circle
					M1 finding radius or diameter of circle
					M1 for finding area of circle or semi-circle
					M1 for complete method
					A1 cao
8			3	3	M1 for sight of 2800×1.025^n ; finding at least two correct
					interest payments
					(i.e. 70 and 71.75)
					M2 for an attempt to evaluate 2800×1.025^n for at least two
					values of n
					A1 cao

Qn		Working	Answer	Mark	Notes
9				4	C1 correct expansion of brackets
					C1 arrives at $n^2 - 2n - n^2 + 4n - 4$
					C1 reduces to $2(2n-3)$ or $4n-6$
					C1 for conclusion
10		$k^2 = \frac{5m + 2e}{3e} \mathbf{or}$	$e = \frac{5m}{3k^2 - 2}$	4	M1 Squaring both sides or clearing fraction
		$k\sqrt{3e} = \sqrt{5m + 2e}$			
		$3ek^2 = 5m + 2e$			M1 Clearing fraction and squaring both sides
		$3ek^2 - 2e = 5m$			M1 Isolating terms in e in a correct equation
		$or -5m = 2e - 3ek^2$			
		$e(3k^2-2)=5m$			
		or $-5m = e(2 - 3k^2)$			
					A1 cao
11	(a)			2	C1 Initial cost, cost of travelling 0 miles
	(b)				C1 Charge per km, cost per 1 km

Qn		Working	Answer	Mark	Notes
12	(a)	$f(x) = x^3 + 4x - 1$	Shown	2	M1 Method to establish at least one root in [0, 1]
		f(0) = -1, f(1) = 4			eg. $x^3 + 4x - 1 (= 0)$ and $f(0) (= -1)$, $f(1) (= 4)$ oe
					A1 Since there is a sign change there must be at least one
					root in $0 < x < 1$ (as f is continuous)
	(b)	$4x = 1 - x^3$	Shown	1	C1 for at least one correct step and no incorrect ones
		or $\frac{x^3}{4} + x = \frac{1}{4}$			
	(c)	$x_1 = \frac{1}{4} - \frac{0}{4} = \frac{1}{4}$	0.246(09375)	3	M1 $x_1 = \frac{1}{4}$
			or		·
		$x_2 = \frac{1}{4} - \frac{\left(\frac{1}{4}\right)^3}{4} = \frac{1}{4} - \frac{1}{256}$	$\frac{63}{256}$		M1 for $x_2 = \frac{1}{4} - \frac{\left(\frac{1}{4}\right)^{13}}{4}$
		$x_2 = \frac{1}{4} - \frac{(4)}{4} = \frac{1}{4} - \frac{1}{256}$	256		WIT IOF $x_2 = \frac{1}{4} - \frac{\sqrt{37}}{4}$
					A1 for $0.246(09375)$ or $\frac{63}{256}$ oe
13	(a)		5	3	M1 for $x(y-3) = 4$
			$\frac{5}{8}$		M1 for $xy = 4 + 3x$
					A1 cao
	(b)		$-\frac{1}{3}$	3	M1 correct expression for $fg(a)$
			3		M1 correct equation where fraction has been removed
					A1 cao

Qn		Working	Answer	Mark	Notes
14			2.4 g/cm^3	5	B1 for appropriate intervals for measurements
					P1 for correct process to find upper bound
					P1 for correct process to find lower bound
					P1 explanation of correct process to find appropriate degree
					of accuracy
					A1 cao
15			6		B1 for expression for Carma's share
					B1 for expression for Banu's share
					M1 for adding shares
					A1 cao
16	(a)		320	2	M1 for sight of 1:4 or 4:1
					A1 cao
	(b)		1 373 600	3	M1 for sight of 1:8 of 8:1
					M1 for 8×171700
					A1 cao

Qn		Working	Answer	Mark	Notes
17	(a) (b)	$\overrightarrow{BC} = -4\mathbf{a} + 2\mathbf{b} + 8\mathbf{a} \ (= 4\mathbf{a} + 2\mathbf{b})$ $\overrightarrow{AM} = 4\mathbf{a} + 2\mathbf{a} + \mathbf{b} \ (= 6\mathbf{a} + \mathbf{b}) \text{ and}$ $\overrightarrow{AN} = 2\mathbf{b} + 8\mathbf{a} + 4\mathbf{a} \ (= 12\mathbf{a} + 2\mathbf{b})$ or $\overrightarrow{AM} = 4\mathbf{a} + 2\mathbf{a} + \mathbf{b} \ (= 6\mathbf{a} + \mathbf{b}) \text{ and}$ $\overrightarrow{MN} = \mathbf{b} + 2\mathbf{a} + 4\mathbf{a} \ (= 6\mathbf{a} + \mathbf{b})$ or $\overrightarrow{AN} = 2\mathbf{b} + 8\mathbf{a} + 4\mathbf{a} \ (= 12\mathbf{a} + 2\mathbf{b})$ and $\overrightarrow{MN} = \mathbf{b} + 2\mathbf{a} + 4\mathbf{a} \ (= 6\mathbf{a} + \mathbf{b})$	2a + b	2 2	M1 A1 correct method to find \overrightarrow{BC} in terms of \mathbf{a} and \mathbf{b} M1 Correct vectors for \overrightarrow{AM} and \overrightarrow{AN} or for LIRANI LARIAL AM and \overrightarrow{MN} or for \overrightarrow{AN} and \overrightarrow{MN} (need not be simplified) If their \overrightarrow{BM} from (a) THERE LARIAL LARIA

Qn		Working	Answer	Mark	Notes		
18		$5 \times \text{"2.5" or } 5 \times \frac{27.5}{11} \text{ or } \frac{\text{RQ}}{5} = \frac{27.5}{11} \text{ oe}$ or $\frac{5}{11} = \frac{RQ}{27.5} \text{ oe}$	12.5	2	M1 Correct expression for RQ or correct equation to give RQ . ft their answer to (a) A1 cao		
	(b)	$42.5 \div "2.5" \text{ or } 42.5 \times \frac{11}{27.5} \text{ or}$ $42.5 \times \frac{5}{"12.5"}$ or $\frac{CD}{42.5} = \frac{11}{27.5} \text{ or } \frac{CD}{42.5} = \frac{5}{"12.5"}$ oe			M1 Correct expression for <i>CD</i> or correct equation to give <i>CD</i> . ft their <i>RQ</i> , if used. ft their answer to (a)		
					A1 cao		
19			128 81	4	M1 for finding expression for surface area as surface are for hemisphere plus circle A1 $r=\frac{4}{3}$ M1 for $\frac{128}{81}\pi$ A1 cao		

Qn	Working	Answer	Mark	Notes
20		31.1	5	M1 for $\frac{1}{2} \times 8.4 \times x \times \sin 40 = 100$ M1 for $100 \div (0.5 \times 8.4 \times \sin 40)$ (= 37.(041)) M1 (dep on 1 st M1) for substituting the appropriate figures into the cosine rule
				e.g. $8.4^2 + 37.041^2 - 2 \times 8.4 \times 37.041 \cos 40^\circ$ M1 (dep on previous M1) for correct order of evaluation or $(c^2 =) 965.(897)$ A1 31.07 – 31.1

Suggested grade boundaries

	9	8	7	6	5	4
Paper 1H	68	60	52	44	35	26
Paper 2H	72	62	52	42	32	22
Paper 3H	58	50	42	34	26	18
Total	198	172	146	120	93	66