	1MA1 Practice papers Set 5: Paper 2H (Regular) mark scheme – Version 1.0						
Que	stion	Working	Answer	Mark	Notes		
1.		4.5 × 1000 × 1000	4 500 000	2	M1 for complete method equivalent to $4.5 \times 1000 \times 1000$ A1 for 4500000 oe		
2.			195	2	M1 for 325 ÷ (8 – 3) (= 65) A1 cao		

		1MA1 Pra	ctice papers Set 5: Pap	er 2H (Re	egular) mark scheme – Version 1.0
Quest	tion	Working	Answer	Mark	Notes
Quest 3.	tion 3 2 1 3 3	Working $30x + 4y = 46 (\times 2)$ $24x + 8y = 45.20 (\times 0.5)$ Eg $60x + 8y = 92$ $24x + 8y = 45.20$ $36x = 46.8$ $x = \frac{46.8}{2}$	Answer Petrol £1.30 Oil £1.75	Mark 5	NotesNotesB1 for correct equations expressed in terms of two variables (oe)M1 for correct process to eliminate either variable (condone one arithmetic error)A1 for either $x = \pounds 1.30$ or $\pounds 1.75$ oeM1 (dep on 1st M1) for correct substitution of their found variable
	H 1 1	36 Eg 30x + 4y = 46 12x + 4y = 22.60 18x = 23.4			OR M1 (indep of 1 st M1 for a correct process to eliminate the other variable (condone one arithmetic error) A1 cao for both $x = \pounds 1.30$ and £1.75 oe
	x C H Q a	$x = \frac{23.4}{18}$ OR Eliminates <i>x</i> first Or substitution back into any correct equation			(SC B1 for $x = \pounds 1.30$, B1 for $y = \pounds 1.75$ oe if M0 scored)

	1MA1 Practice papers Set 5: Paper 2H (Regular) mark scheme – Version 1.0						
Que	stion	Working	Answer	Mark	Notes		
4.		180-150 (=30)	12	3	M1 for 180 – 150 (= 30)		
		360 ÷ "30"			M1 for 360 ÷ "30"		
					A1 cao		
		OR			OR		
		$\frac{N-2}{N} \times 180 = 150$			M1 for $\frac{N-2}{N} \times 180 = 150$		
		(N-2)180 = 150N			M1 for 360 ÷ "30"		
		30N = 360			A1 cao		

		1MA1 Pra	ctice papers Set 5: Pap	er 2H (R	egular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
5.			The Friendly Bank	4	M1 for a correct method to find interest for the first year for either bank OR correct method to find the value of investment after one year for either bank OR use of the multiplier 1.04 or 1.05
					M1 for a correct full method to find the value of the investment (or the value of the total interest) at the end of 2 years in either bank
					A1 for 2100.8(0) and 2110.5(0) (accept 100.8(0) and 110.5(0))
					C1 (dep on M1) ft for a correct comparison of <i>their</i> total amounts, identifying the bank from their calculations
					OR
					M1 for either 1.04×1.01 or 1.05×1.005
					M1 for 1.04×1.01 and 1.05×1.005
					A1 for 1.0504 and 1.05525
					C1 (dep on M1) ft for a correct comparison of <i>their</i> total multiplying factors identifying the bank from their calculations

	1MA1 Practice papers Set 5: Paper 2H (Regular) mark scheme – Version 1.0						
Que	stion	Working	Answer	Mark	Notes		
6.			12	4	M1 x, $\frac{x}{2}$, $\frac{x}{2}$ - 5, 9 M1 x + $\frac{x}{2}$ + $\frac{x}{2}$ - 5 + 9 < 30 M1 correct method to isolate x A1 cao		
7.		(100% – 10%) × Normal Price = £4.86 Normal Price = £4.86 ÷ 0.9	£5.40	3	M1for '4.86 is 90%' or $(100\% - 10\%) \times \text{Normal Price} = 4.86 \text{ or } 4.86 \div 90$ M1 for $4.86 \div 0.9 \text{ or } 4.86 \times 10 \div 9 \text{ oe}$ A1 £5.40 (accept 5.4) OR M1 10% = £0.54 or £4.86 ÷ 9 M1 (dep) £4.86 + '£0.54' A1 £5.40 (accept 5.4)		

	1MA1 Practice papers Set 5: Paper 2H (Regular) mark scheme – Version 1.0						
Que	stion	Working	Answer	Mark	Notes		
8.	(a)		graph	2	B2 for fully correct cf graph (accept ogive) condone graph starting at (30, 0)[B1 for 4 or 5 points plotted consistently or for cf graph drawn through points other than end points of intervals]		
	(b(i)		53 - 57	3	B1 for $53 - 57$ or ft their cf graph (tolerance $\pm 2mm$ square) M1 for 'upper quartile (from cf = 60)' – 'lower quartile (from cf = 20)' (tolerance $\pm 2mm$ square)		
	(ii)	63 – 43	20		A1 for $17 - 23$ or ft their cf graph		
	(c)	80 - 60	19 – 23	2	M1 for 80 – '60 (from $A = 63$)' for their cf graph (tolerance ±2mm square) or 80 – (52 + [80 – 52] × $\frac{3}{10}$) oe		
		OR			A1 for 19 – 23		
		$80 - (52 + [80 - 52]) \times \frac{3}{10})$			[SC B1 for 90 – '60 (from $A = 63$)' (tolerance ± 2 mm square)]		
		80 - 60.4 = 19.6					

		1MA1 Pra	ctice papers Set 5: Pap	er 2H (Re	egular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
9.	(a)	(3x+2)(2x+1) = 100		2	M1 or $(2x \times 3x) + 2(2x + 1) + 3x = 100$ oe or $(2x \times 3x) + (2 \times 2x (\times 1)) + 1) + 3x + 1 + 1 = 100$ oe
		$6x^2 + 4x + 3x + 2 = 100$	$6x^2 + 7x - 98 = 0 *$		other partitions are acceptable but partitioning must go on to form a correct equation. A1 Accept $6x^2 + 7x + 2 = 100$ if M1 awarded
	(b)	(3x+14)(2x-7) (= 0)	73.5	5	M2 or $(x=)\frac{-7\pm\sqrt{49}+2352}{12}$ or $(x=)\frac{-7\pm\sqrt{2401}}{12}$
					If not M2 then M1 for $(3x \pm 14)(2x \pm 7)$ or $(x=)\frac{-7 \pm \sqrt{7^2 - 4 \times 6 \times -98}}{2 \times 6}$
		x = 3.5 (Area =) 6 x "3.5" ² or (3 × "3.5) × (2 × "3.5")			condone + in place of \pm and 1 sign error.A1Dependent on at least M1 Ignore negative root.M1ftDependent on at least M1 and $x > 0$ A1 cao Dependent on first M1

	1MA1 Practice papers Set 5: Paper 2H (Regular) mark scheme – Version 1.0					
Que	stion	Working	Answer	Mark	Notes	
10.			23.8	5	M1 for $8^2 - 5^2$ or $AC^2 + 5^2 = 8^2$ M1 for $\sqrt{(8^2 - 5^2)}$ (=6.24(4)) with least one of 8^2 or 5^2 correctly evaluated. M1 for 8π (=25.13 to 25.13(2)) or $8\pi \div 2$ or 4π (=12.56(6)) using $\pi = 3.14$ or better M1 for 5 + their AC + their arc PBC A1 for 23.7 - 23.9	
11.			20 shown	5	B1 for 3 combinations $(1 + 8, 5 + 4, 7 + 2)$ M1 for partial working $\frac{3}{20} \times 80$ or $\frac{3}{20} \times 3$ oe or 80×3 (= 240) M1 for complete working $\frac{3}{20} \times 80 \times 3$ oe M1 (income) 80×70 (= 5600) or 80×0.7 (= 56) C1 for "56 – 36=20" clearly stated	

1MA1 Practice papers Set 5: Paper 2H (Regular) mark scheme – Version 1.0					
Que	stion	Working	Answer	Mark	Notes
12.	(a) (b)	$\left((9)^{\frac{3}{2}} = \right) 27$ or 2.7	3×10^m	2 3	B2 (B1 for $3 \times \sqrt{10^{2m}}$ or 3×10^{km} where $k \neq 1$ or $a \times 10^m$ where $a \neq 3$) B1
		27×10^{3n} oe	$2.7 imes 10^{3n+1}$		M1 A1
13.		$3.5^{2} + 10^{2} (=112.25) \text{ or } 6^{2} + 3.5^{2} + 10^{2} (=148.25)$ $\sqrt{"112.25"} (=10.59) \text{ or } \sqrt{"148.25"} (=12.17)$ $\tan ("x") = 6 / "10.59"$ or sin("x") = 6/"12.17"	29.5	4	M1 M1 awrt 10.6 or 12.17 M1(dep on M1M1) A1 awrt 29.5

	1MA1 Practice papers Set 5: Paper 2H (Regular) mark scheme – Version 1.0							
Que	stion	Working	Answer	Mark	Notes			
14.		35.5 × 26.5	940.75	3	B1 for sight of 35.5 or 26.5 or 35.4999() or 26.4999()			
					M1 for UB length \times UB width where			
					$33.49 \le 0B$ length ≤ 33.3 26.49 < UB width < 26.5			
					$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $			
					$\left(\frac{1}{4} \right)^{-1} = \frac{1}{4} \left(\frac{1}{4} \right)^$			
15.	(a)		$\frac{4}{5}$ oe	1	B1			
	(b)			2	M1 $\frac{1}{(\sqrt{x-1})^2+1}$ or $\frac{1}{x-1+1}$			
			$\frac{1}{r}$		A1 (Also accept x^{-1})			
			A					

1MA1 practice paper 2H (Set 5) mark scheme: Version 1.0

		1MA1 Pra	ctice papers Set 5: Pap	er 2H (Re	egular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
16.	(a)		1.6 - 2.4	3	M1 for tangent drawn at time = 3 M1 (dep) for 'diff y ' ÷ 'diff x ' A1 for 1.6 – 2.4
	(b)	Example:	96 - 102	3	M1 for division of area into trapezia or counting squares
		$2(0+7) \div 2 = 7$	plus		M1 for use of at least one trapezium (oe) to calculate area or totalling all squares and part squares
		$2(7+11) \div 2 = 18$	comparison		C1 (dep on M1) for answer in range $96 - 102$ and positive
		2(11+12) = 2 = 23			comment to compare 'area' with 100
		$2(12+12) \div 2 = 24$			(SC B1 for area of 84 if M1 not scored)
		$2(12+12) \div 2 = 24$			
		Total = 96			
		OR			
		Area ≈ 50 squares			
		1 square = $2 \times 1 = 2$ m			
		$50 \times 2 = 100$			

	1MA1 Pra	ctice papers Set 5: Pap	er 2H (Re	egular) mark scheme – Version 1.0
Question	n Working	Answer	Mark	Notes
Question 17.	1MA1 Pra Working	ctice papers Set 5: Pap Answer 565or 566	er 2H (Ro Mark 5	egular) mark scheme – Version 1.0 Notes M1 for using other than a linear relationship attempt to establish Month 1 population as $100 \times x$ oe. eg $100\left(1 + \frac{r}{100}\right)$ M1 for forming equation $100 \ x^2 = 200$ oe. eg. $100\left(1 + \frac{r}{100}\right)^2 = 200$ M1 for method to solve equation to establish $x = \sqrt{2}$ M1 for attempting to find Month 5 population e.g. $100 \times \sqrt{2^5}$ oe A1 for 565 or 566 given as answer dependent on working seen Or M1 for realising that population doubles in 2 months in a non- linear relationship, e.g. month 4 = 400, month 6 = 800, etc. M1 for forming the equation $2 = x^2$ or $x = \sqrt{2}$ M1 for method to solve equation to establish $x = \sqrt{2}$ M1 for method to solve equation to establish $x = \sqrt{2}$ M1 for forming the equation $2 = x^2$ or $x = \sqrt{2}$ M1 for method to solve equation to establish $x = \sqrt{2}$ M1 for attempting to find Month 5 population is $100 \times \sqrt{2^5}$ A1 for 565 or 566 given as answer dependent on working seen
				A1 for 565 or 566 given as answer dependent on working seen
				Or
				M1 for establishing population is of form $N = Ab^t$ oe
				M1 for substituting $t = 0$, $N = 100$ gives $100 = Ax^0$ or $A = 100$

1MA1 Practice papers Set 5: Paper 2H (Regular) mark scheme – Version 1.0									
Que	stion	Working	Answer	Mark	Notes				
18.	(a)		b – a		M1 for substituting $t = 2$, $n = 200$ gives $200 = 100x^2$ and $x^2 = 2$ so $x = \sqrt{2}$ M1 for attempting to find Month 5 population is $100 \times \sqrt{2^5}$ A1 for 565 or 566 given as answer dependent on working seen B1 for $\mathbf{b} - \mathbf{a}$ or $-\mathbf{a} + \mathbf{b}$ oe				
	(b)	$\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$ $\overrightarrow{OP} = \mathbf{a} + \frac{3}{5}(\mathbf{b} - \mathbf{a})$ $\overrightarrow{OP} = \frac{1}{5}(2\mathbf{a} + 3\mathbf{b})$	proof		M1 for $\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$ or $\overrightarrow{OP} = \overrightarrow{OB} + \overrightarrow{BP}$ or M1 for $\overrightarrow{AP} = \frac{3}{5}(\mathbf{b} - \mathbf{a})$ or $\overrightarrow{BP} = \frac{2}{5}(\mathbf{a} - \mathbf{b})$ or A1 for $\mathbf{a} + \frac{3}{5}(\mathbf{b} - \mathbf{a})$ or $\mathbf{b} + \frac{2}{5}(\mathbf{a} - \mathbf{b})$ or leading to given answer with correct expansion of brackets seen				
19.		$(4n^{2} + 2n + 2n + 1)$ $- (2n + 1)$ $= 4n^{2} + 4n + 1 - 2n - 1$ $= 4n^{2} + 2n$	Proof	3	M1 for 3 out of 4 terms correct in the expansion of $(2n + 1)^2$ or $(2n + 1) \{(2n + 1) - 1\}$ A1 for $4n^2 + 2n$ or equivalent expression in factorised form C1 for convincing statement using $2n(2n + 1)$ or $2(2n^2 + n)$ or $4n^2 + 2n$ to prove the result				

1MA1 practice paper 2H (Set 5) mark scheme: Version 1.0

1MA1 Practice papers Set 5: Paper 2H (Regular) mark scheme – Version 1.0								
Question		Working	Answer Ma		Notes			
		=2n(2n+1)						

	Original source of questions							Mean score of students achieving grade:						
			Session			Max								
Qn	Spec	Paper	YYMM	Qn	Торіс	score	ALL	A *	Α	В	С	D	E	
1	5MB3	3H	1303	Q09b	Conversions	2	0.26	1.40	0.54	0.14	0.03	0.02	0.05	
2	NEW				Ratio	2								
3	5AM1	1H	1206	Q15	Simultaneous equations	5	3.05	4.91	4.66	3.60	1.43	0.36	0.00	
4	5MM2	2H	1106	Q08	Interior and exterior angles	3	1.08	2.81	2.13	0.95	0.41	0.09	0.00	
5	1MA0	2H	1306	Q14	Compound interest	4	2.22	3.69	3.34	2.79	1.94	0.97	0.23	
6	5AM2	2H	1311	Q15	Solve inequalities	4	2.71	3.68	3.10	2.94	2.13	1.96	3.00	
7	1380	2H	1106	Q16	Reverse percentages	3	1.41	2.91	2.29	1.41	0.65	0.21	0.05	
8	5AM1	1H	1211	Q12	Cumulative frequency diagrams	7	3.79	6.00	4.40	2.89	1.66	0.73		
9	4MA0	2H	1401	Q18	Solve quadratic equations	7	3.46	6.31	4.20	2.00	0.45	0.14	0.00	
10	5MM2	2H	1111	Q14	Pythagoras in 2D	5	2.47	4.74	4.14	2.83	1.48	0.42	0.00	
11	5MB1	1H	1511	Q11	Probability	5	1.89	5.00	3.75	3.36	2.30	1.54	1.00	
12	4MA0	1H	1401	Q18	Standard form	5	1.58	3.26	1.56	0.61	0.14	0.01	0.02	
13	4MA0	2H	1305	Q22	Trigonometry	4	1.76	2.87	1.61	0.65	0.16	0.02	0.00	
14	1380	2H	1011	Q24	Bounds	3	0.92	2.85	2.25	1.15	0.29	0.04	0.01	
15	4MA0	4H	1301	Q23	Functions	3	1.65	2.63	1.96	1.04	0.47	0.14	0.03	
16	5AM2	2H	1206	Q20	Distance-time / speed graphs	6	1.77	4.88	2.94	1.02	0.19	0.03	0.00	
17	5AM2	2H	1406	Q21	Proportional change	5	1.34	4.47	2.43	0.58	0.18	0.04	0.00	
18	1380	2H	906	Q23	Vectors	4	0.81	3.13	1.43	0.47	0.12	0.02	0.00	
19	1MA0	2H	1406	Q21b	Algebraic proof	3	0.38	1.88	0.95	0.29	0.07	0.02	0.00	
						80								

National performance data from Results Plus