GCSE Mathematics Practice Tests: Set 4

Paper 1H (Non-calculator)

Time: 1 hour 30 minutes

You should have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser, calculator.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- · Answer all questions.
- Answer the questions in the spaces provided - there may be more space than you need.
- · Calculators may be used.
- · Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.Check your answers if you have time at the end.

Answer ALL questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1.	Write these numbers in order of size.			
	Start with the smallest number.			

$$2^5$$
 $64^{\frac{1}{2}}$ 4^3 $8^{\frac{1}{3}}$ 16 64^0

You must show clearly how you got your answer.

You must show clearly how you got your answer.

$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32$$
 $6^{\frac{1}{2}} = \sqrt{64}$
 $4^3 = 4 \times 4 \times 4$
 4^3

	1	1		_	3
64°,	83,	64,	16,	2,	4

2. There are 50 counters in a bag.

The counters are blue or yellow or black or white.

A counter is taken at random from the bag.

The table shows each of the probabilities that the counter will be blue or black or white.

Colour	blue	yellow	black	white
Probability	0.4	0.14	0.3	0.16

Work out the number of yellow counters in the bag.

Sum of an probabilities=1 | P(yellow) = 1-0.4-0.3-0.16 = 0.3 -0.16

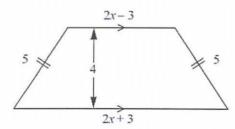
Relative Frequency

1 cm in Content

3. Buses to Acton leave a bus station every 24 minutes. Buses to Barton leave the same bus station every 20 minutes.

A bus to Acton and a bus to Barton both leave the bus station at 9 00 a.m.

When will a bus to Acton and a bus to Barton next leave the bus station at the same time?


Acton: 24 48 72 96 (20)

Barton: 20 40 60 80 100 (20)

LCM=120: Leavest the same time
120 minutes after 9:00am

9:00 + 2hours = 11:00am

4. Here is a trapezium.

All the measurements are in cm. The area of the trapezium is 18 cm².

Calculate the numerical value of the perimeter of the trapezium.

Griven: A=18

Perimeter:

collect Sub $x = \frac{18}{8}$

$$A=4(2x-3+2x+3)$$

$$P = 10+4\left(\frac{15}{8}\right)$$

$$= 10+\frac{72}{8}$$

19cm

loverse Percenteges

5. The normal price of a television is reduced by 30% in a sale.

The sale price of the television is £350

Work out the normal price of the television.

anginal =
$$100\%$$
 | 100% = 70% | 100% = 70% | 10

£ 500

Estimation

6. Work out an estimate for the value of

$$\frac{6.8 \times 191}{0.051}$$

$$6.8 \times 7$$

$$191 = 200$$

$$0.051 = 0.05$$

$$0.051 = 0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

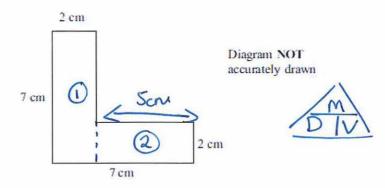
$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$


$$0.05$$

$$0.05$$

$$0.05$$

$$0.05$$

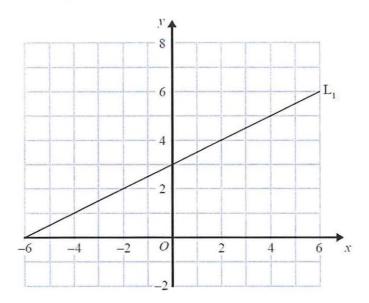
7.

The diagram shows the cross-section of a solid prism.

The length of the prism is 2 m. = 200 cm

The prism is made from metal.

The density of the metal is 8 grams per cm³.


Work out the mass of the prism.

$$M=D\times V$$
 $V=CSA\times Lergth$
 $CSA=Area ()+Area ()$
 $=(fcm \times 2cm)+(San \times 2cm)$
 $=(fcm \times 2cm)+(San \times 2cm)$
 $=(fcm \times 2cm)+(San \times 2cm)$
 $=2ucm^2$
 $V=CSA\times length$
 $V=2ucm^2 \times 200cm$
 $=4800cm^3$
 $M=4800cm^3 \times 8g/cm^3$
 $M=38400g$
 $M=38400g$

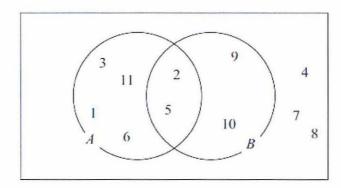
384009

Straight Line Properties

The diagram shows a straight line, L1, drawn on a grid. 8.

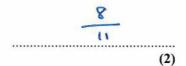
A straight line, L_2 , is parallel to the straight line L_1 and passes through the point (0, -5).

Find an equation of the straight line L₂.

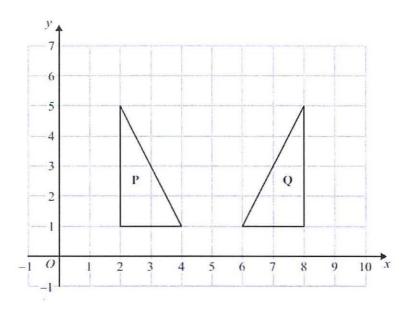

$$M = \frac{y^2 - y_1}{\chi_2 - x_1}$$
(0,3) and (4,5)

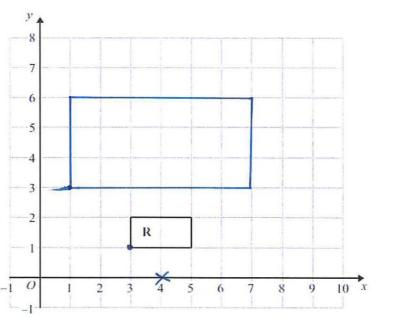
Lz has same gradient of Li

$$M = \frac{5-3}{4-0} = \frac{2}{4} = \frac{1}{2}$$


i. graduent of Lz = 1/2

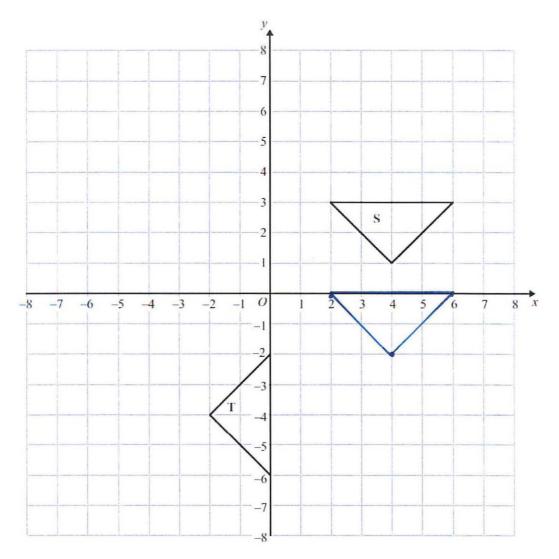
9. The Venn diagram shows the numbers 1 to 11


(a) Work out $P(A \cup B)$


(b) Work out P (B')

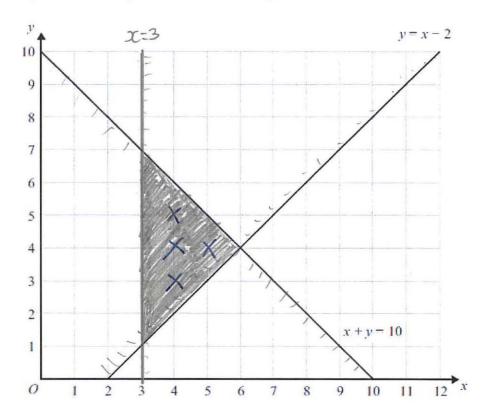
10.

(a) Describe fully the single transformation that maps triangle ${\bf P}$ onto triangle ${\bf Q}$.


(2)

(b) Enlarge rectangle **R**, with scale factor 3 and centre (4, 0).

By vectors: $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ SFX3 $3 \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 3 \end{pmatrix}$


(2)

Shape S can be transformed to shape T by the translation $\begin{pmatrix} 0 \\ -3 \end{pmatrix}$ followed by a rotation.

_ <<	
Describe the rotation.	
90° cocursie, centre (0,0)	
	••
(3	3)
(T) 1 1 5	1
(Total 7 marks	S)

11. The lines y = x - 2 and x + y = 10 are drawn on the grid.

On the grid, mark with a cross (\times) each of the points with integer coordinates that are in the region defined by

(0,0) works
$$y>x-2$$
 Sketched (0,0) works $x+y<10$ Sketched.

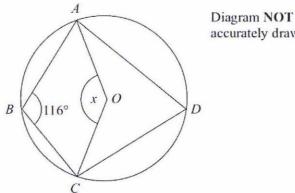
x>3 Needs sketching

Co-ordinates on THE LINES do not court (Total 3 marks)

since > signs, not >.

Harry travels from Appleton to Brockley at an average speed of 50 mph. He then travels from Brockley to Cantham at an average speed of 70 mph.

Harry takes a total time of 5 hours to travel from Appleton to Cantham. The distance from Brockley to Cantham is 210 miles.


Calculate Harry's average speed for the total distance travelled from Appleton to Cantham.

Journey 1 Journey 2 Total
$$(A \rightarrow B)$$
 $(B \rightarrow C)$ $(A \rightarrow C)$ $(A \rightarrow C)$ $S = SOmph$ $S = 7?? (S)$ $D = 100 \text{m iles } (B)$ $D = 210 \text{miles } (B)$ $D = 310 \text{m iles } (B)$ $D = 210 \text{m iles } (B)$ $D = 310 \text{m iles } (B)$ $D = 310 \text{m iles } (B)$

$$S = \frac{D}{T} = \frac{310 \text{ miler}}{5 \text{ hours}}$$
$$= 62 \text{ mph}$$

60
 mph
(Total 4 marks)

13.

accurately drawn

A, B, C and D are points on the circumference of a circle with centre O. Angle $ABC = 116^{\circ}$.

Find the size of the angle marked x. Give reasons for your answer.

Reflex angle $0=2\times116$ Angle at the centre is twice that at the circumbers $=232^{\circ}$ $\times =360^{\circ}-232^{\circ}=128^{\circ}$ Angles around a point = 360°

- 14. The nth term of a quadratic sequence is $n^2 + 3n 2$
 - (a) Find the fourth term of this sequence.

let
$$n=4$$
 | n^2+3n-2
 $(4)^2+3(4)-2$
 $16+12-2=26$ (2)

Here are the first five terms of a different quadratic sequence.

1 7 17 31 49

(b) Find, in terms of n, an expression for the nth term of this sequence.

 $2n^2-1$ (3)

Dependent Probability Trees

Fiza has 10 coins in a bag. 15.

There are three £1 coins and seven 50 pence coins.

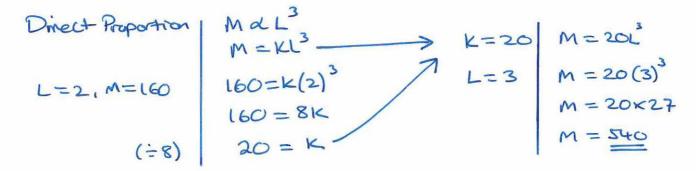
Fiza takes at random, 3 coins from the bag.

Work out the probability that she takes exactly £2.50.

How money ways to make \$2.50? (£1, £1, 50p) or (£1, 50p, £1) or (£0p, £1) = 3 x P(E1, E1, 50p)

P(E1, £1, 50p) = ...

 $\frac{3}{8} = \frac{1}{8} = \frac{3}{8} = \frac{42}{8}$


Recall that we need all 3 permutations of £1. £1. 50p $\therefore 3 \times \frac{42}{720} = \frac{126}{720}$

Direct Proportion

16. M is directly proportional to L^3 .

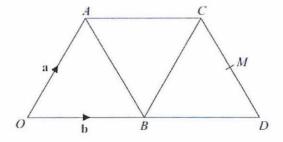
When
$$L = 2$$
, $M = 160$

Find the value of M when L = 3

540

Exponding and Solving Quadranics

17. Solve $(x-1)^2 - 2(x-1) - 3 = 0$


Expand
$$(x-1)(x-1)-2(x-1)-3=0$$

 $\chi^2-x-x+1-2(x-1)-3=0$
 $\chi^2-x-x+1-2x+2-3=0$
Collect $\chi^2-4x=0$
 $\chi^2-4x=0$
 $\chi^2-4x=0$
 $\chi^2-4x=0$
Solve $\chi^2-4x=0$

OACD is a trapezium made from three equilateral triangles.

$$\overrightarrow{OA} = \mathbf{a}$$

$$\overrightarrow{OB} = \mathbf{b}$$

M is the midpoint of CD.

(a) Write \overrightarrow{AB} in terms of a and b.

(b) Show that \overrightarrow{OC} is parallel to \overrightarrow{BM} .

Parallel if scalar

multiples of each other

(4)

Algebraic Proof

19. Prove algebraically that the sum of the squares of two consecutive integers is always an odd number.

Integer = n $(nH)^2 + (n)^2$ Consecutive = nH

Expand = $(nH)(nH) + n^2$ Expand = $n^2 + n + n + 1 + n^2$ Collect = $2n^2 + 2n + 1$ Factorise = $2(n^2 + n) + 1$ Conclusion 2m is even : $2(n^2 + n)$ is even

: $2(n^2 + n) + 1$ is odd.

20. Given that
$$\frac{8-\sqrt{18}}{\sqrt{2}} = a + b\sqrt{2}$$
, where a and b are integers,

find the value of a and the value of b.

find the value of a and the value of b.

$$\sqrt{18} = \sqrt{9} \sqrt{2}$$

$$2. 8 - 3\sqrt{2}$$

$$\sqrt{2}$$

$$2. 8 - 3\sqrt{2}$$

$$3. 8 - 3\sqrt{2}$$

$$3. 9 - 3\sqrt{2}$$

$$3. 9 - 3\sqrt{2}$$

$$3. 9 - 3\sqrt{2}$$

$$4. 9 - 3\sqrt{2}$$

$$5. 9 - 3\sqrt{2}$$

$$5. 9 - 3\sqrt{2}$$

$$5. 9 - 3\sqrt{2}$$

$$7. 9 -$$

(Total 3 marks)

TOTAL FOR PAPER IS 80 MARKS