1MA1 Practice Tests Set 1: Paper 3H (Regular) mark scheme – Version 1.0					
Question	Working	Answer	Mark	Notes	

1MA1 Practice Tests: Set 1 Regular (3H) mark scheme – Version 1.0 This publication may only be reproduced in accordance with Pearson Education Limited copyright policy. ©2016 Pearson Education Limited.

	1MA1 Practice Tests Set 1: Paper 3H (Regular) mark scheme – Version 1.0						
Que	stion	Working	Answer	Mark	Notes		
1.		Angle $BAC = 76^{\circ}$	40°	4	B1 for Angle $BAC = 76^{\circ}$ (could be just on the diagram)		
		Angle $BAP =$			M1 for 76° – ("180° – 90 – 54°")		
		$180^{2} - 90^{2} - 34^{2} - 30^{2}$			A1 for $x = 40^{\circ}$ (explicitly stated)		
		$x = 76^{\circ} - 36^{\circ}$			C1 (dep on M1) for 'the sum of the <u>angles</u> of a <u>triangle</u> is 180° ' and ' <u>alternate angles</u> on parallel lines are equal'		
		OR			OR		
		Angle $QCD = 54^{\circ}$			B1 for Angle $QCD = 54^{\circ}$ (could be just on the diagram)		
		Angle ACP =			M1 for 180° – 90° – ("180° – 76°– 54°")		
		$180^{\circ} - 76^{\circ} - 54^{\circ} = 50^{\circ}$			A1 for $x = 40^{\circ}$ (explicitly stated)		
		$x = 180^{\circ} - 90^{\circ} - 50^{\circ}$			C1 (dep on M1) for ' <u>corresponding angles</u> on parallel lines are equal' and 'sum of the <u>angles</u> on a <u>straight line</u> is 180°' and 'the sum of the <u>angles</u> of a <u>triangle</u> is <u>180°</u> '		
					or ' <u>corresponding angles</u> on parallel lines are equal' and ' <u>exterior angle</u> of a triangle is equal to the sum of the two <u>interior opposite</u> angles'		
					OR		
					M1 for angle $QCB = 180 - 54$ (=126)		
					M1 for 180 – 90 – "126 – 76"		
					A1 for $x = 40^{\circ}$ (explicitly stated)		
					C1 (dep on M1) for 'sum of <u>allied angles</u> = 180° ' and 'the sum of the <u>angles</u> of a <u>triangle</u> is <u>180</u>		

	1MA1	Practice Tests Set 1: Pa	per 3H (Re	gular) mark scheme – Version 1.0
Quest	ion Working	Answer	Mark	Notes
Quest 2.	ion Working 25 50 75 100 125 150 175 35 70 105 140 175	Answer 10.96	5	NotesM1 for attempt to find the LCM of 25 and 35, e.g. at least 3 correct multiples of 25 and at least 3 correct multiples of 35 or 2 factor trees with at least one correctA1 for 175M1 for at least one of $\frac{"175"}{25}$ or "5" or $\frac{"175"}{35}$ or "7" or 5.50 or 5.46 either unassociated or associated with the correct pack.M1 for "5" × £1.10 + "7" × 78pA1 caoORM2 for attempt to find the number of packs of cups and plates, e.g. sight of 5 (× 35) or 7 (× 25)A1 for 5 (× 35) and 7 (× 25)M1 for 5 × £1.10 + 7 × 78p
				A1 cao

	1MA1 Practice Tests Set 1: Paper 3H (Regular) mark scheme – Version 1.0						
Que	estion	Working	Answer	Mark	Notes		
3.	(a)		$\frac{5}{14}$	1	B1 for $\frac{5}{14}$ oe fraction		
			54	3	M1 for $84 \div (5+9) (= 6)$ or $1 - "(a)" (=)$		
	(b)				M1 for $84 \div (5+9) \times 9$ oe or		
					A1 cao		
	(c)		e.g. 6 green	3	M1 for correct method to find twice as many green beads as red beads, e.g. $2 \times 30 (= 60)$ or $2 \times (84 - "54")$ or "54" + "6" (= 60)		
					A1 for 6 (green) OR if <i>n</i> reds are added then $2n + 6$ (greens), where <i>n</i> and $2n$ could be numbers OR 30 (red) and 60 (green)		
					C1 (dep on M1) for showing correct relevant working and clear conclusion stating number of green beads or stating total numbers of red beads and green beads		
4.		$\frac{48.45}{425} \times 100$ OR $\frac{11}{100} \times 425 = 46.75$	Katie spends more	3	M1 for $\frac{48.45}{425} \times 100$ A1 for 11.4 C1 (dep on M1) for conclusion ft from comparison of two percentages OR M1 for $\frac{11}{100} \times 425$ or for 10% = 42.5(0), 1% = 4.25, 42.5(0) + 4.25 A1 for 46.75 C1 (dep on M1) for correct ft from comparison of "46.75" and 48.45		

		1MA1 I	Practice Tests Set 1: Paj	per 3H (Re	gular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
5.		Jan x	18	5	M1 for a method to express all 4 months' amounts algebraically
					(at least 3 correct, ft)
		Feb 2 <i>x</i>			
					M1 for an expression for total with at least 3 correct terms
		Mar $2x + 10$			added
		Apr $\frac{1}{2}(2x+10)$			M1 for a correct inequality stated algebraically
		2			
					M1 for an inequality reduced to $ax > b - c$
		$x+2x+2x+10+\frac{1}{2}(2x+10)>12$			1
		2 *			A1 cao
		6r + 15 > 123			NR: accept inequalities written as equations
		0x + 15 - 125			SC T & Lig 5 modes for 19 otherwise 0 modes
					SC 1&1 is 5 marks for 18, otherwise 0 marks

		1MA1	Practice Tests Set 1: Paj	per 3H (Re	gular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
Que 6.	stion	$\frac{1\text{MA1}}{\frac{1}{2} \times \pi \times 10^2 - \pi \times 5^2}{2} = 12.5\pi$	Practice Tests Set 1: Paj Answer 39.3	per 3H (Reg Mark 5	gular) mark scheme – Version 1.0 Notes M1 for $\pi \times 5^2$ (= 78.5(39)) or $\pi \times 10^2$ (= 314(.159)) or 100π or 25π M1 for $\frac{1}{2} \times \pi \times 10^2$ (= 157(.07)) or 50π M1 (dep on at least one of the previous Ms) for $\frac{1}{2} \times \pi \times 10^2 - \pi \times 5^2$ M1 (dep on previous M) for $(\frac{1}{2} \times \pi \times 10^2 - \pi \times 5^2) \div 2$ or $\frac{157.07'-'78.53'}{2}$ or $25\pi/2$ A1 for answer in range $39.2 - 39.3$ OR M1 for $\pi \times 5^2$ (= 78.5(39)) or $\pi \times 10^2$ (= 314(.159)) or 100π or 25π M1 for $\frac{1}{4} \times \pi \times 10^2$ (= 78.5(398)) or 25π
					M1 for $\frac{1}{2} \times \pi \times 5^2$ (= 39.2(69)) or 12.5 π M1(dep on 2 previous Ms) for '78.5' - '39.2' A1 for answer in range 39.2 - 39.3

1MA1 Practice Tests Set 1: Paper 3H (Regular) mark scheme – Version 1.0						
Question		Working	Answer	Mark	Notes	
7.			explanation	1	C1 for "he has not expanded the brackets correctly" oe	

		1MA1	Practice Tests Set 1: Pa	per 3H (Re	gular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
8.	(a)	5000×1.028^4	5583.96	3	M1 1 + 0.0280e or 5000×0.028
					M1 5000 \times 1.028 ⁴ oe or a complete method for compound interest year on year
					A1 cao
	(b)	12000×1.02×1.035×1.05	£13301.82	5	M1 12000 \times 1.02 \times 1.035 \times 1.05 oe or a complete method not
	(i)				using a multiplier
	(ii)	3.492753115	3.49		A1 cao
					M1 $\frac{19901.00}{10000}$ or 1.108485
					M1 $\left(\sqrt[5]{\frac{12801.82}{12600}}-1\right) \times 100$
					A1 cao
					OR
					M1 1.02×1.035×1.05 or 1.108485 seen
					M1 (1.02 × 1.035 × 1.05 - 1) × 100
					A1 cao

	1MA1 Practice Tests Set 1: Paper 3H (Regular) mark scheme – Version 1.0					
Que	estion	Working	Answer	Mark	Notes	
9.	(a)	(3x+2)(2x+1) = 100 $6x^2 + 4x + 3x + 2 = 100$	$6x^2 + 7x - 98 = 0$	2	M1 $(3x + 2)(2x + 1) = 100$ or $(2x \times 3x) + 2(2x + 1) + 3x = 100$ or $(2x \times 3x) + (2 \times 2x (\times 1)) + 1) + 3x + 1 + 1 = 100$ (oe)	
					Other partitions are acceptable but partitioning must go on to form a correct equation.	
					A1 Accept $6x^2 + 7x + 2 = 100$ if M1 awarded	
	(b)	(3x + 14)(2x - 7) (= 0) x = 3.5	73.5	5	M2 for $(3x + 14)(2x - 7) (= 0)$ or $(x =) \frac{-7 \pm \sqrt{49} + 2352}{12}$ or	
		(Area =) $6 \times "3.5"^2$ or $(3 \times "3.5) \times (2 \times "3.5")$			$(x=)\frac{-7\pm\sqrt{2401}}{12}$	
					If not M2 then M1 for $(3x \pm 14)(2x \pm 7)$ or	
					$(x=)\frac{-7\pm\sqrt{7^2-4\times6\times-98}}{2\times6}$	
					condone + in place of \pm and 1 sign error.	
					A1 Dependent on at least M1 Ignore negative root.	
					M1ft Dependent on at least M1 and $x > 0$	
					A1 cao Dependent on first M1	

	1MA1 Practice Tests Set 1: Paper 3H (Regular) mark scheme – Version 1.0						
Que	stion	Working	Answer	Mark	Notes		
10.	(a)		3, -6, -5	2	B2 cao for all 3		
					(B1 for any 1 or 2 correct)		
	(b)		Quadratic graph	2	B2 for a fully correct graph		
					OR		
					B1 for all 7 points ft on (a) plotted correctly ± 1 sq		
					B1 for a smooth curve through all 7 of their plotted points depending on at least B1 in (a)		
	(c)	Draw $y = -3$	0.3, 3.7	2	B1 for $0.2 - 0.4$ or ft from graph ± 1 square		
					B1 for $3.6 - 3.8$ or ft from graph ± 1 square		
					(SC: If no marks earned then B1 for line $y = -3$ drawn)		
11.		132.88 ÷ 88100	151	3	M1 for recognising that 88% is equivalent to 132.88		
					M1 for 132.88 ÷ 88 ×100 oe		
					A1 cao		

	1MA1 Practice Tests Set 1: Paper 3H (Regular) mark scheme – Version 1.0							
Question		Working	Answer	Mark	Notes			
12.		$DC^2 = 5^2 + 8^2;$	76.3	6	M1 $(DC^2 =)5^2 + 8^2$ or $DC = \sqrt{89} = 9.4(3)$			
		$DC = \sqrt{89}$ $DB^2 = 5^2 + 10^2;$			M1 ($DB^2 =)5^2 + 10^2$ or $DB = \sqrt{125} = 11.1(8)$			
		$DB = \sqrt{125}$			M1 $(BC^2) = 8^2 + 10^2$ or $BC = \sqrt{164} = 12.8(1)$			
		$BC^2 = 8^2 + 10^2;$ $BC = \sqrt{164}$			M2 $\cos CDB = \frac{'89'+'125'-'164'}{2\times'\sqrt{89'\times'\sqrt{125'}}}$			
		$\cos CDB = \frac{89 + 125 - 164}{2}$			A1 76.2–76.3			
		$2 \times \sqrt{89} \times \sqrt{125}$			OR			
					M1 correct sub into cosine rule on formula sheet			
		= 0.23702			$\sqrt{164'}^2 = \sqrt{89'}^2 + \sqrt{125'}^2 - 2 \times \sqrt{89'} \times \sqrt{125'} \times \cos x$			
					M1 correct rearrangement to $\cos CDB = \frac{'89'+'125'-'164'}{2\times'\sqrt{89'\times'\sqrt{125''}}}$			
					A1 76.2–76.3			

		1MA1	Practice Tests Set 1: Pa	gular) mark scheme – Version 1.0	
Question		Working	Answer	Mark	Notes
13.	stion	$4(x + 4) = 4x + 16$ $4(3x + 4) = 12x + 16$ $4x + 16 = \frac{2}{3}(12x + 16)$ $12x + 48 = 24x + 32$ $12x = 16$	5 ¹ / ₃	5	M1 for a correct expression for at least one perimeter. M1 for "4x + 16" = $\frac{2}{3}$ "(12x + 16)" oe M1 for 12x + 48 = 24x + 32 or 4x + 16 = 8x + $\frac{32}{3}$ oe A1 for $\frac{4}{3}$ B1 ft for " $\frac{4}{3}$ " + 4 OR M2 for x + 4 = $\frac{2}{3}$ (3x + 4) M1 for 3x + 12 = 6x + 8 or x + 4 = x + $\frac{8}{3}$ oe A1 for $\frac{4}{3}$ B1 ft for " $\frac{4}{3}$ " + 4

	1MA1 Practice Tests Set 1: Paper 3H (Regular) mark scheme – Version 1.0									
Question	Working	Answer	Mark	Notes						
14.	$\frac{12}{20} \times \frac{11}{19} + \frac{5}{20} \times \frac{4}{19} + \frac{3}{20} \times \frac{2}{19}$	$\frac{222}{380}$	4	B1 for $\frac{12}{19}$ or $\frac{5}{19}$ or $\frac{3}{19}$ (could be seen in working or on a tree						
				diagram)						
	$1 - \left(\frac{12}{20} \times \frac{11}{19} + \frac{5}{20} \times \frac{4}{19} + \frac{3}{20} \times \frac{4}{19}\right)$			M1 for $\frac{12}{20} \times \frac{5}{19} = \frac{12}{20} \times \frac{3}{19} \times \frac{5}{20} \times \frac{12}{19} \times \frac{5}{20} \times \frac{3}{19} \times \frac{3}{20} \times \frac{12}{19} \times \frac{3}{20} \times \frac{5}{19} \times \frac{5}{20} \times \frac{5}{19} $						
				M1 for $\frac{12}{20} \times \frac{5}{19} + \frac{12}{20} \times \frac{3}{19} + \frac{5}{20} \times \frac{12}{19} + \frac{5}{20} \times \frac{3}{19} + \frac{3}{20} \times \frac{12}{19} + \frac{3}{20} \times \frac{5}{19}$						
				A1 for $\frac{222}{380}$ oe or 0.58(421)						
				OR						
				B1 for $\frac{8}{19}$ or $\frac{15}{19}$ or $\frac{17}{19}$						
				M1 for $\frac{12}{20} \times \frac{8}{19}$ or $\frac{5}{20} \times \frac{15}{19}$ or $\frac{3}{20} \times \frac{17}{19}$						
				M1 for $\frac{12}{20} \times \frac{8}{19} + \frac{5}{20} \times \frac{15}{19} + \frac{3}{20} \times \frac{17}{19}$						
				A1 for $\frac{222}{380}$ (oe) or 0.58(421)						
				OR (continued over)						

1MA1 Practice Tests Set 1: Paper 3H (Regular) mark scheme – Version 1.0										
Ques	tion	Working	Answer	Mark	Notes					
14.					B1 for $\frac{11}{19}$ or $\frac{4}{19}$ or $\frac{2}{19}$					
					M1 for $\frac{12}{20} \times \frac{11}{19}$ or $\frac{5}{20} \times \frac{4}{19}$ or $\frac{3}{20} \times \frac{2}{19}$					
			M1 for $1 - \left(\frac{12}{20} \times \frac{11}{19} + \frac{5}{20} \times \frac{4}{19} + \frac{3}{20} \times \frac{2}{19}\right)$							
					A1 for $\frac{222}{380}$ oe or 0.58(421)					
					NB if decimals used they must be correct to at least 2 decimal places					
					SC : with replacement					
					B2 for $\frac{111}{200}$ oe					
					OR					
					e.g.					
					B0					
					M1 for $\frac{12}{20} \times \frac{8}{20}$ or $\frac{5}{20} \times \frac{15}{20}$ or $\frac{3}{20} \times \frac{17}{20}$					
					M1 for $\frac{12}{20} \times \frac{8}{20} + \frac{5}{20} \times \frac{15}{20} + \frac{3}{20} \times \frac{17}{20}$					
				A0						

	1MA1 Practice Tests Set 1: Paper 3H (Regular) mark scheme – Version 1.0									
Que	stion	Working	Answer	Mark	Notes					
15.		$\frac{1}{2} \times x^2 \times \sin 60 = 36$ $x^2 = \frac{72}{\sin 60} = 83.13$	9.12	3	M1 $\frac{1}{2} \times x^2 \times \sin 60 (= 36)$ or $\frac{1}{2} \times ab \times \sin 60 (= 36)$ Or $\frac{1}{2} \times x \times \sqrt{x^2 - \left(\frac{x}{2}\right)^2}$ (= 36) M1 $x^2 = \frac{72}{\sin 60}$ or $ab = \frac{72}{\sin 60}$ or $x^2 = \frac{36 \times 2}{\sqrt{0.75}}$ A1 9.11 - 9.12					
16.		(2n + 1)(2m + 1) = 4nm + 2n + 2m + 1 = 2(2nm + n + m) + 1	Proof	3	M1 for $2n + 1$ oe used to describe an odd number A1 for product = $4nm + 2n + 2m + 1$ where <i>n</i> is not the same as <i>m</i> C1 (dep on M1) for stating that $2 \times (2nm + n + m)$ ' is even since it is a multiple of 2 so adding 1 gives an odd number					
17.	(b)	20 + 15 + 7.5 + 3.5 + 1	46 - 48 overestimate with reason	3	M1 for splitting curve appropriately to find area M1 for complete area calculation e.g. $1 \times 20 + \frac{1}{2}(20 + 10) + \frac{1}{2}(10 + 5) + \frac{1}{2}(5 + 2) + \frac{1}{2} \times 2$ A1 for answer in range 46 – 48 C1 for overestimate and appropriate reason linked to method, e.g. area between trapeziums and curve is also included					

	1MA1 Practice Tests Set 1: Paper 3H (Regular) mark scheme – Version 1.0										
Question		Working	Answer	Mark	Notes						
18.		$15 \div 70 = 120 \div n$	560	4	M2 $\frac{120 \times 70}{15}$ or 120×4.66						
		120 × 4.66()			or 8 × 70 or $\frac{15}{70} \times \frac{8}{8} = \frac{120}{n}$ (oe)						
		$OR \ \frac{120 \times 70}{15}$			or 120 ÷ 21.4 × 100						
		OR 8×70			(M1 for $\frac{15}{70}$ (oe) or 21.4% seen or 120 ÷ 15 (= 8)						
		OR $\frac{15}{70} \times \frac{8}{8} = \frac{120}{n}$			Or $\frac{15}{120}$ (= $\frac{1}{8}$) or 4.66() seen)						
		OR 120 ÷ 21.4 × 100			A1 560 cao						
					C1 for a correct mathematical assumption, e.g. population hasn't changed overnight or sample is random, etc.						

	Source of questions				Max	Mean		Mean score of students achieving						
Qu	Spec	Paper	Session	Qu	Торіс	score	% all	ALL	A *	Α	в	С	D	Е
1	5MM2	2F	1306	Q23	Angles	4	15	0.60				1.87	0.65	0.23
2	5AM1	1H	1111	Q16	Money calculations	5	76	3.80	5.00	4.43	4.23	3.18	2.57	1.00
3	5MM2	2H	1311	Q12	Probability	7	74	5.21	6.57	6.35	5.85	4.96	2.53	0.95
4	5AM1	1H	1111	Q07	Percentages	3	67	2.02	3.00	3.00	2.20	1.27	0.43	0.00
5	5AM2	2H	1411	Q12	Solve inequalities	5	66	3.30	5.00	4.50	4.25	2.71	1.79	0.00
6	5MM2	2H	1111	Q12	Area of a circle	5	61	3.06	4.88	4.64	3.96	2.07	0.60	0.33
7				NEW	Solving linear equations	1				Ν	lo data a	vailable		
8a	5AM1	1H	1206	Q16a	Compound interest	3	71	2.13	2.96	2.82	2.35	1.36	0.59	0.00
8b	5AM1	1H	1206	Q16bi	Compound interest	2			No data available					
9	4MA0	2H	1401	Q18	Solve quadratic equations	7	49	3.46	6.31	4.20	2.00	0.45	0.14	0.00
10	2540	2F	811	Q28	Graphs of quadratic equations	6	20	1.18				2.47	1.16	0.41
11	1380	2H	911	Q21	Reverse percentages	3	29	0.88	2.79	1.99	1.00	0.29	0.07	0.02
12	1387	6H	711	Q25	Pythagoras in 3D	6	28	1.65	4.35	2.12	0.79	0.16		
13	5AM1	1H	1111	Q14	Solve linear equations	5	25	1.25	4.83	1.43	0.70	0.36	0.57	1.00
14	1MA0	2H	1206	Q25	Ratio	4	24	0.96	3.52	2.34	0.86	0.16	0.02	0.00
15	1387	6H	711	Q21	Trigonometry	3	22	0.65	2.15	0.75	0.16	0.03		
16	5MM2	2H	1306	Q23	Algebraic proof	3	15	0.44	1.67	0.64	0.23	0.04	0.01	0.00
17	5AM2	2H	1506	Q20	Area under a graph	4	41	1.23	2.60	1.97	1.03	0.34	0.11	0.00
18	2MB01	1H	1111	Q14	Estimating populations	4	15	0.58	No other data available					
						80								