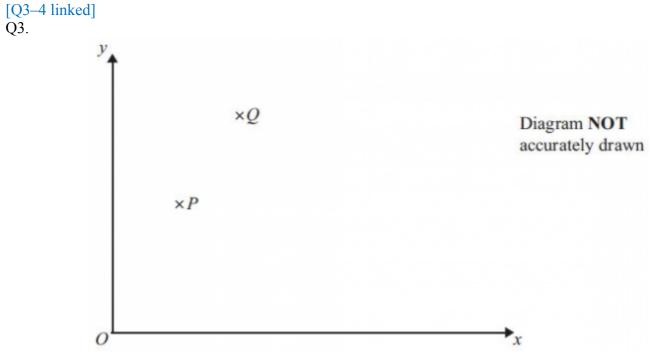
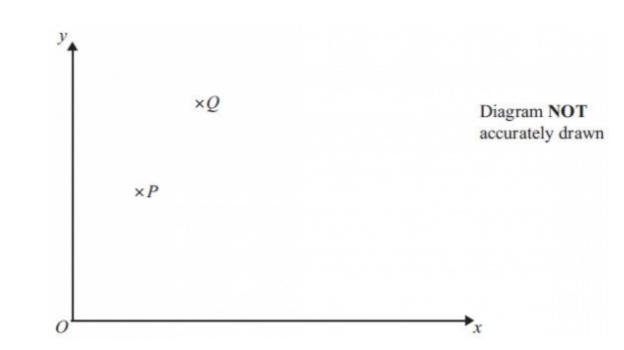
Higher tier unit 18 check in test


Non-calculator

Q1.
$$e = \frac{4}{1}$$
 $f = \frac{6}{2}$

Write $\mathbf{e} + \mathbf{f}$ as a column vector.

Q2.
$$\mathbf{a} = \frac{2}{a}$$
 $\mathbf{b} = \frac{2b}{3}$


Write $3\mathbf{a} - 2\mathbf{b}$ as a column vector.

The diagram is a sketch.

P is the point (2, 4) Q is the point (4, 8)

Find the vector *PQ* Give your answer as a column vector

The diagram is a sketch.

P is the point (2, 4) Q is the point (4, 8)

$$QR = \begin{bmatrix} 6\\ 4 \end{bmatrix}$$

Q4.

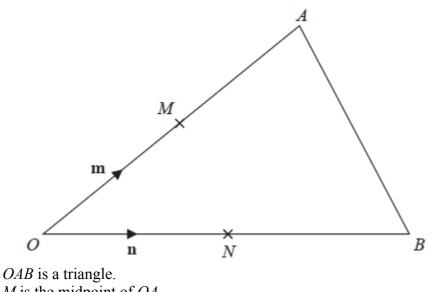
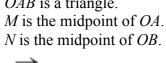
M is the midpoint of *PQ*. *N* is the midpoint of *QR*.

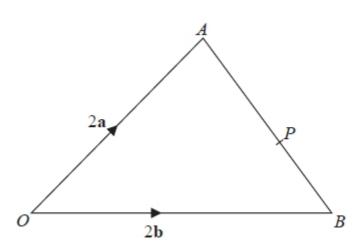
Find the vector *MN* Give your answer as a column vector

Q5. Find the length of the vector

 $\frac{4}{6}$. Give your answer in surd form.

GCSE Mathematics (9–1) Higher tier Unit 18 check in test Pearson Education 2016

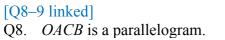

Diagram NOT accurately drawn

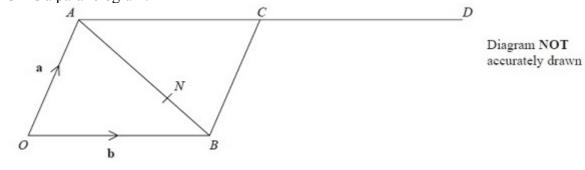
$$\overrightarrow{OM} = \mathbf{m}$$

 $\overrightarrow{ON} = \mathbf{n}$

Show that *AB* is parallel to *MN*.

Q7.



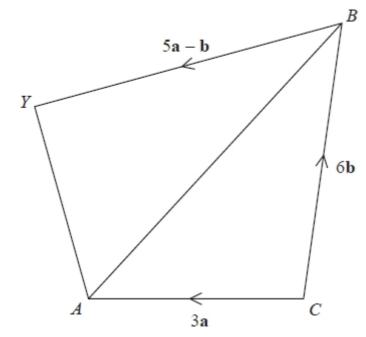

OAB is a triangle. *P* is the point on *AB* such that AP : PB = 5:3

$$\overrightarrow{OA} = 2\mathbf{a}$$

 $\overrightarrow{OB} = 2\mathbf{b}$
 $\overrightarrow{OP} = k(3\mathbf{a} + 5\mathbf{b})$ where k is a scalar quantity.

Find the value of *k*.

Q6.


 $OA = \mathbf{a}$ and $OB = \mathbf{b}$

D is the point such that AC = CDThe point *N* divides *AB* in the ratio 2 : 1

Write an expression for ON in terms of **a** and **b**.

Q9. From the diagram in question 8, prove that *OND* is a straight line.

Q10.

CAYB is a quadrilateral.

CA = 3a

 $CB = 6\mathbf{a}$

BY = 5a b

X is the point on AB such that AX : XB = 1 : 2

Prove that
$$CX = \frac{2}{5}CY$$

GCSE Mathematics (9–1) Higher tier Unit 18 check in test $\ensuremath{\mathbb{C}}$ Pearson Education 2016

Topics listed in objectives

- Understand and use vector notation, including column notation, and understand and interpret vectors as displacement in the plane with an associated direction.
- Understand that 2a is parallel to a and twice its length, and that a is parallel to -a in the opposite direction.
- Represent vectors, combinations of vectors and scalar multiples in the plane pictorially.
- Calculate the sum of two vectors, the difference of two vectors and a scalar multiple of a vector using column vectors (including algebraic terms).
- Find the length of a vector using Pythagoras' Theorem.
- Calculate the resultant of two vectors.
- Solve geometric problems in 2D where vectors are divided in a given ratio.
- Produce geometrical proofs to prove points are collinear and vectors/lines are parallel.

Answers

Q1.	10
	1
Q2.	6 4b
	3a + 6
Q3.	2 4
Q4. Q5.	4
	0
Q5.	2√13
	$MN = \mathbf{n} - \mathbf{m}$ and $AB = 2\mathbf{n} - 2\mathbf{m}$, so lines are parallel
Q7.	$k = \frac{1}{4}$
Q8.	$ON = \frac{1}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}$
Q9.	OD = 3ON
Q10.	$CY = 5\mathbf{a} + 5\mathbf{b}, \ CX = 2\mathbf{a} + 2\mathbf{b}$