Higher tier unit 13a check in test

Non-calculator

- Q1. Write down the exact value of cos 30°.
- Q2. Write down the exact value of $\sin 45^{\circ}$.
- Q3. Write down the exact value of $\tan 60^{\circ}$.
- Q4.

Work out the value of *x*.

Q5. Sketch the graph of $y = \cos x^{\circ}$ for $0 \le x \le 360$

[Q6–7 linked]

Q6. The diagram shows part of a sketch of the curve $y = \sin x^{\circ}$.

Write down the coordinates of the point P.

- Q7. Write down the coordinates of the point Q in the diagram in question 6.
- Q8. The diagram shows part of a sketch of the curve $y = \sin x^\circ$.

On the grid above, sketch the graph of $y = -\sin x^\circ$.

On the grid above, sketch the graph of $y = \sin x^{\circ} + 2$ for $-180 \le x \le 180$

Q10. Sketch the graph of $y = \cos(x + 2)$ for $0 \le x \le 360$

Topics listed in objectives

- Recognise, sketch and interpret graphs of the trigonometric functions (in degrees) $y = \sin x$, $y = \cos x$ and $y = \tan x$ for angles of any size.
- Know the exact values of $\sin \theta$ and $\cos \theta$ for $\theta = 0^{\circ}$, 30° , 45° , 60° and 90° and exact value of $\tan \theta$ for $\theta = 0^{\circ}$, 30° , 45° and 60° and find them from graphs.
- Apply to the graph of y = f(x) the transformations y = -f(x), y = f(-x) for sine, cosine and tan ٠ functions f(x).
- Apply to the graph of y = f(x) the transformations y = f(x) + a, y = f(x + a) for sine, cosine and tan functions f(x).

Answers

Q1.

- $\frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2}$ Q2.
- $\sqrt{3}$ 03.
- Q4. 6 cm
- Q5. Sketch through (0, 1), (90, 0), (180, -1), (270, 0), (360, 1)
- Q6. (180, 0)
- (270, -1)Q7.
- Q8. reflection in *x*-axis
- Sketch translated two units up the *y*-axis Q9.
- Sketch translated two units left along the *x*-axis Q10.

Higher tier unit 13b check in test

Calculator

Q1. The diagram shows two vertical posts, AB and CD, on horizontal ground.

Q3. Calculate the length of *AB* in the diagram in question 2. Give your answer correct to 3 significant figures.

Diagram NOT accurately drawn

The area of triangle ABC is 50 cm².

Work out the length of *AC*. Give your answer correct to 3 significant figures.

Q5. The diagram shows a cuboid *ABCDEFGH*. AB = 8 cm, AF = 6 cm and FC = 16 cm.

Diagram NOT accurately drawn

Find the size of the angle between the line *FC* and the plane *ABGF*. Give your answer correct to 1 decimal place.

ABCD is a square of side 20 cm. The angle between any sloping edge and the plane *ABCD* is 55°

Calculate the surface area of the pyramid. Give your answer correct to 2 significant figures.

- Q7. The diagram shows a cuboid *ABCDEFGH*.
 - AB = 5cm BC = 7cm AE = 3cm

Diagram NOT

Calculate the length of *AG*. Give your answer correct to 3 significant figures.

Q8. There is a coastguard station at point *A* and at point *B*. *B* is due East of *A*. The distance from *A* to *B* is 12 km.

There is a rowing boat at point *R*. *R* is on a bearing of 160° from A. *R* is on a bearing of 220° from B.

There is a speedboat at point T. T is 5 km due South of A.

Work out the shortest distance from T to R. Give your answer correct to 1 decimal place.

Diagram NOT accurately drawn

AC = 8.4m Angle $ACB = 40^{\circ}$ The area of the triangle = 100m².

Work out the length of *AB*. Give your answer correct to 3 significant figures.

Q10. ABCDE is a square-based pyramid.

AE = BE = CE = DE = 12 cmAB = 15 cm

Calculate the size of angle *DEB*. Give your answer to the nearest degree.

Topics listed in objectives

- Know and apply Area = $\frac{1}{2}ab \sin C$ to calculate the area, sides or angles of any triangle.
- Know the sine and cosine rules, and use to solve 2D problems (including involving bearings).
- Use the sine and cosine rules to solve 3D problems.
- Understand the language of planes, and recognise the diagonals of a cuboid.
- Solve geometrical problems on coordinate axes.
- Understand, recall and use trigonometric relationships and Pythagoras' Theorem in right-angled triangles, and use these to solve problems in 3D configurations.
- Calculate the length of a diagonal of a cuboid.
- Find the angle between a line and a plane.

Answers

Q1.	0.664 m
Q2.	60.4 m ²
Q3.	13.4 m
Q4.	12.7 cm
Q5.	51.3°
Q6.	1300 cm ²
Q7.	9.11 cm
Q8.	6.2 km
Q9.	31.1 m
Q10.	124°