Higher tier unit 17-1 check in test

Non-calculator

Q1. Simplify $\frac{x+1}{2} + \frac{x+3}{3}$

Q2. Simplify fully
$$\frac{4}{2x} = \frac{3}{x}$$

Q3. Write as a single fraction in its simplest form $\frac{2}{y+3} = \frac{1}{y-6}$

Q4. Simplify fully
$$\frac{2x^2 + 6x}{x^2 - 2x - 15}$$

Q5. Simplify fully
$$\frac{3x^2 - 6x}{x^2 + 2x - 8}$$

Q6. Solve $\frac{4x \ 1}{5} + \frac{x+4}{2} = 3$

Q7. Solve
$$\frac{h+7}{3} + \frac{2h}{2} = \frac{5}{6}$$

Q8. Show that $\frac{3x+6}{x^2 \ 3x \ 10} | \frac{x+5}{x^3 \ 25x}$ simplifies to ax where a is an integer.

Q9. Write

$$4 - \left[(x+3) \div \frac{x^2 + 5x + 6}{x - 2} \right]$$

as a single fraction in its simplest form.

Q10. Solve
$$\frac{x+2}{3x} + \frac{x-2}{2x} = 3$$

Topics listed in objectives

- Simplify algebraic fractions;
- Multiply and divide algebraic fractions;
- Solve quadratic equations arising from algebraic fraction equations;

Answers	
Q1.	$\frac{5x+9}{6}$
Q2.	$\frac{7x 6}{x(2 x)}$
Q3.	$\frac{y 15}{(y+3)(y 6)}$
Q4.	$\frac{2x}{x-5}$
Q5.	$\frac{3x}{x+4}$
Q6.	$x = \frac{12}{13}$
Q7.	h = -0.75
Q8.	3x
Q9.	$\frac{3x+10}{x+2}$
Q10.	$x = \frac{2}{13}$

Higher tier unit 17-2 check in test

Non-calculator

Q1. Rationalise the denominator of
$$\frac{15}{\sqrt{3}}$$

Q2. Make *x* the subject of 4x - 3 = 2(x + y)

Q3. $m = \sqrt{\frac{k^3 + 1}{4}}$

Make *k* the subject of the formula.

- Q4. Make *u* the subject of the formula $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$
- Q5. Which of the following represents the inverse of the function f(x)?
 - -f(x) $f^{-1}(x)$ g(x) f(-x)
- Q6. f(x) = 4x 1Find $f^{-1}(x)$.
- Q7. f(x) = 3x + 2g(x) = 2x - 2Find f(x) - g(x)
- Q8. $f(x) = x^2 6$. Find f(3x)
- Q9. f(x) = 4x 1 $g(x) = x^{2} + 2$ Find gf(x).
- Q10. Prove that $(2n+3)^2 (2n-3)^2$ is a multiple of 8 for all positive integer values of *n*.

Topics listed in objectives

- Rationalise the denominator involving surds;
- Change the subject of a formula, including cases where the subject occurs on both sides of the formula, or where a power of the subject appears;
- Change the subject of a formula such as $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$, where all variables are in the denominators;
- Solve 'Show that' and proof questions using consecutive integers (n, n + 1), squares a^2 , b^2 , even numbers 2n, odd numbers 2n + 1;
- Use function notation;
- Find f(x) + g(x) and f(x) g(x), 2f(x), f(3x) etc algebraically;
- Find the inverse of a linear function;
- Know that $f^{-1}(x)$ refers to the inverse function;
- For two functions f(x) and g(x), find gf(x).

Answers

- Q1. $5\sqrt{3}$ Q2. x = y + 1.5Q3. $k = \sqrt[3]{(2m+1)(2m-1)}$ Q4. $u = \frac{fv}{v f}$ Q5. $f^{-1}(x)$ Q6. $f^{-1}(x) = \frac{x+1}{4}$ Q7. f(x) - g(x) = x + 4Q8. $9x^2 - 6$
- Q9. gf(x) = $16x^2 8x + 3$
- Q10. working leading to $8 \times 3n$